OXFORD FEM READING GROUP
Homepage for the University of Oxford finite element methods reading group!
Meetings this academic year will be hosted on Fridays from 15:00–16:00 GMT in S2.37.
You can join on Teams by clicking here, or using the details:
  - Meeting ID: 394 839 103 607 3
- Passcode: jn646Te6
UPCOMING
2025–2026
Michaelmas term
Click here to view references for upcoming presentations.
Click here to view the records of past presentations.
Click here to hide the list of suggested papers.
N.B. I’m very poor at keeping this list up-to-date, so if you’re looking for more recent recommendations then just shoot me a message!
2025
  - A. H. Chen, J. Hsu, Z. Liu, M. Macklin, Y. Yang and C. Yuksel, Offset geometric contact, ACM Transactions on Graphics (TOG), 44 (2025), doi:10.1145/3731205
- M. Mehrenberger, T. D. Nguyen, E. Serre and F. Schwander, A new quasi-asymptotic-preserving mixed formulation with discontinuous Galerkin method for highly anisotropic diffusion equations, preprint (2025), link
2023
  - E. Zampa, A. Alonso Rodríguez and F. Rapetti, Using the FES framework to derive new physical degrees of freedom for finite element spaces of differential forms, Advances in Computational Mathematics, 49 (2023), doi:10.1007/s10444-022-10001-3
- H. Liu, M. Neilan and M. B. Otus, A divergence-free finite element method for the Stokes problem with boundary correction, Journal of Numerical Mathematics, 31 (2023), doi:10.1515/jnma-2021-0125
2022
  - K. Kean, M. Neilan and M. Schneier, The Scott–Vogelius method for the Stokes problem on anisotropic meshes, International Journal of Numerical Analysis and Modeling, 19 (2022), doi:10.48550/arXiv.2109.14780
- L. Allen and R. C. Kirby, Bounds-constrained polynomial approximation using the Bernstein basis, Numerische Mathematik, 152 (2022), doi:10.1007/s00211-022-01311-1
- B. Cockburn and S. Xia, An adjoint-based super-convergent Galerkin approximation of eigenvalues, Journal of Computational Physics, 449 (2022), doi:10.1016/j.jcp.2021.110816
2021
  - E. Bueler, The full approximation storage multigrid scheme: A 1D finite element example, preprint (2021), doi:10.48550/arXiv.2101.05408
- M. Neilan and M. B. Otus, Divergence-free Scott–Vogelius Elements on Curved Domains, SIAM Journal on Numerical Analysis, 59 (2021), doi:10.1137/20M1360098
2020
  - A. Buffa, J. Dölz, S. Kurz, S. Schöps, R. Vázquez and F. Wolf, Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis, Numerische Mathematik, 144 (2020), doi:10.1007/s00211-019-01079-x
2019
  - M. Neilan and M. Wu, Discrete Miranda–Talenti estimates and applications to linear and nonlinear PDEs, Journal of Computational and Applied Mathematics, 356 (2019), doi:10.1016/j.cam.2019.01.032
- X. Hu, J. Zu and L. T. Zikatanov, Randomized and fault-tolerant method of subspace corrections, Research in the Mathematical Sciences, 6 (2019), doi:10.1007/s40687-019-0187-z
2016
  - A. Angoshtari and A. Yavari, Hilbert complexes of nonlinear elasticity, Zeitschrift für Angewandte Mathematik und Physik, 67 (2016), doi:10.1007/s00033-016-0735-y
2014
  - J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Mathematics of Computation, 83 (2014), doi:10.1090/S0025-5718-2013-02753-6
2012
  - M. Holst and A. Stern, Geometric variational crimes: Hilbert complexes, finite element exterior calculus and problems on hypersurfaces, Foundations of Computational Mathematics, 12 (2012), doi:10.1007/s10208-012-9119-7
- M. Holst and A. Stern, Semilinear mixed problems on Hilbert complexes and their numerical approximation, Foundations of Computational Mathematics, 12 (2012), doi:10.1007/s10208-011-9110-8
2009
  - B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems, SIAM Journal on Numerical Analysis, 47 (2009), doi:10.1137/070706616
2007
  - C. Ortner and E. Süli, Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems, SIAM Journal on Numerical Analysis, 45 (2007), doi:10.1137/06067119X
2006
  - C. Carstensen, Clément Interpolation and Its Role in Adaptive Finite Element Error Control, in Partial Differential Equations and Functional Analysis, Operator Theory: Advances and Applications 168, vol. 168, Birkhäuser, Basel, 2006, pp. 27–43, doi:10.1007/3-7643-7601-5_2
2005
  - T. J. Hughes, J. A. Cottrell and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194 (2005), doi:10.1016/j.cma.2004.10.008
2002
  - D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM Journal on Numerical Analysis, 39 (2002), doi:10.1137/S003614290138416
2001
1997