OXFORD FEM READING GROUP
Homepage for the University of Oxford finite element methods reading group!
Meetings this academic year will be hosted on Tuesdays from 14:00–15:00 GMT.
UPCOMING
2025–2026
Michaelmas term
Week |
Date |
Topic |
Presenter |
1 |
14.OCT |
TBA… |
TBA… (probably me) |
2 |
21.OCT |
TBA… |
TBA… |
3 |
28.OCT |
TBA… |
TBA… |
4 |
04.NOV |
TBA… |
TBA… |
5 |
11.NOV |
TBA… |
TBA… |
6 |
18.NOV |
TBA… |
TBA… |
7 |
25.NOV |
TBA… |
TBA… |
8 |
02.DEC |
TBA… |
TBA… |
Click here to view the records of past presentations.
Click here to hide the suggested reads.
2024
- B. Grimmer, Provably faster gradient descent via long steps, SIAM Journal on Optimization, 34 (2024), doi:10.1137/23M1588408
2023
- E. Zampa, A. Alonso Rodríguez and F. Rapetti, Using the FES framework to derive new physical degrees of freedom for finite element spaces of differential forms, Advances in Computational Mathematics, 49 (2023), doi:10.1007/s10444-022-10001-3.
- H. Liu, M. Neilan and M. B. Otus, A divergence-free finite element method for the Stokes problem with boundary correction, Journal of Numerical Mathematics, 31 (2023), doi:10.1515/jnma-2021-0125.
2022
- K. Kean, M. Neilan and M. Schneier, The Scott–Vogelius method for the Stokes problem on anisotropic meshes, International Journal of Numerical Analysis and Modeling, 19 (2022), article.
- L. Allen and R. C. Kirby, Bounds-constrained polynomial approximation using the Bernstein basis, Numerische Mathematik, 152 (2022), doi:10.1007/s00211-022-01311-1.
- B. Cockburn and S. Xia, An adjoint-based super-convergent Galerkin approximation of eigenvalues, Journal of Computational Physics, 449 (2022), doi:10.1016/j.jcp.2021.110816.
2021
- E. Bueler, The full approximation storage multigrid scheme: A 1D finite element example, preprint (2021), arXiv:2101.05408.
- M. Neilan and M. B. Otus, Divergence-free Scott–Vogelius Elements on Curved Domains, SIAM Journal on Numerical Analysis, 59 (2021), doi:10.1137/20M1360098.
2020
- A. Buffa, J. Dölz, S. Kurz, S. Schöps, R. Vázquez and F. Wolf, Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis, Numerische Mathematik, 144 (2020), doi:10.1007/s00211-019-01079-x.
2019
- M. Neilan and M. Wu, Discrete Miranda–Talenti estimates and applications to linear and nonlinear PDEs, Journal of Computational and Applied Mathematics, 356 (2019), doi:10.1016/j.cam.2019.01.032.
- X. Hu, J. Zu and L. T. Zikatanov, Randomized and fault-tolerant method of subspace corrections, Research in the Mathematical Sciences, 6 (2019), doi:10.1007/s40687-019-0187-z.
2016
- A. Angoshtari and A. Yavari, Hilbert complexes of nonlinear elasticity, Zeitschrift für Angewandte Mathematik und Physik, 67 (2016), doi:10.1007/s00033-016-0735-y.
2014
- J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Mathematics of Computation, 83 (2014), doi:10.1090/S0025-5718-2013-02753-6.
2012
- M. Holst and A. Stern, Geometric variational crimes: Hilbert complexes, finite element exterior calculus and problems on hypersurfaces, Foundations of Computational Mathematics, 12 (2012), doi:10.1007/s10208-012-9119-7.
- M. Holst and A. Stern, Semilinear mixed problems on Hilbert complexes and their numerical approximation, Foundations of Computational Mathematics, 12 (2012), doi:10.1007/s10208-011-9110-8.
2009
- B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems, SIAM Journal on Numerical Analysis, 47 (2009), doi:10.1137/070706616.
2007
- C. Ortner and E. Süli, Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems, SIAM Journal on Numerical Analysis, 45 (2007), doi:10.1137/06067119X.
2006
- C. Carstensen, Clément Interpolation and Its Role in Adaptive Finite Element Error Control, in Partial Differential Equations and Functional Analysis, Operator Theory: Advances and Applications 168, E. Koelink, J. van Neerven, B. de Pagter, G. Sweers, A. Luger, H. Woracek, eds, vol. 168, Birkhäuser, Basel, 2006, pp. 27–43, doi:10.1007/3-7643-7601-5_2.
2005
- T. J. Hughes, J. A. Cottrell and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194 (2005), doi:10.1016/j.cma.2004.10.008.
2002
- D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM Journal on Numerical Analysis, 39 (2002), doi:10.1137/S003614290138416.
2001
1997