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What are Differential Forms?



Overview

We fix a smooth orientable Riemannian manifold M. That is, we
have a locally Euclidean geometry with a pointwise inner product,
which behaves smoothly. This structure lets us describe PDE on

sub-manifolds, possibly of weaker regularity, in terms of

» differential k forms;
» the exterior derivative;
» the Hodge star.



Top-forms

A top-form p encodes integration over M. It does this by assigning
a scalar to each set of n vectors Yi,---,Y,. This yields a
well-defined integral provided

w(AY1, - AY,) = det(A) w(Ya, -+, Ya).
For example, in Euclidean space the volume form is given by

MEHC(Ylv Tty Yn) — dEt[Yla Tty Yn]

Area = det[Y1, Y2]
Y2

Y1



k forms

Similarly, we imagine a k form « as something that assigns a scalar
to each set of k vectors Y7, ---, Y. It should be alternating in the
sense that for all permutations ¢ we have

a(Y17 Ty Yk) = sgn(a) a(YO'(l)’ T Yo’(k))

We denote the space of k forms on M by AK(M).



Pull-back

A k form encodes integration over k dimensional sub-manifolds as
follows: If S is a sub-manifold of M, then a tangent vector in S is
also tangent to M. We say that the inclusion / : S — M induces a
map i* : AK(M) — A*(S) by

i*a(Y1,~- ,Yk) = Oé(i*yl,--- ,i*yk).

N Y
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Wedge product

Given a k form « and a / form f3, their wedge product is the k + /
form defined by

(A ﬁ)(Yl, o Yiqn)

= 20 ZSgH Yoy s Yo ) BOYo(ke1)s - s Yo(ktr))-

For example, if dx and dy are 1-forms then

dx ANdy = dx ® dy — dy ® dx.



Basis

If dxq,- -, dx, is a basis for Al|, then

/\k|p — span{dx,-1 A A dX,'k = Zk},

dx dx A dy dx ANdy A\ dz



Inner product

By duality we get an induced metric on AY(M). If dxq,--- ,dx, is
the dual basis of Xi,---, X, and we write gjj = (X, Xj), then

<Z ajdxj, Z bjdx;) = Z a,'g"jbj.
i j i

This further extends to general k forms by the Gram determinant

(dxiy A -+ Adxj, dxj A - Adxj ) = det((dx;,, dx;))-



Volume form

The volume form is the positively oriented top-form 1z which
satisfies (jug, f1g) = 1. It provides a duality between 0-forms and
top forms. This means we can integrate 0-forms

[r= [ tue

It also lets us compare the two different expressions we have for
relating o € AX(M) to other forms

aaﬁ = <O‘76>/~Lg B € /\k(M)>
v any oy eNTKM).



Hodge star

The Hodge star % : AK(M) — A""%(M) is uniquely defined by
a A *B = <O‘7ﬁ>ﬂg'
It can be interpreted in terms of a duality

span{dz} = {v e R": v L {dx,dy}},
span{dx,dy} ={veR":v L dz}.




Exterior derivative

The exterior derivative is adjoint to the boundary operator, in the
sense that for all o € A9™T—1(T)

/da:/ «
T aT

It can be defined in local coordinates by

d(f dxi, A Adx;) = Z 5 dxj Adxi, A= A dxi,.

b Gé



Exterior derivative

If £ € A°(M) then

n
of

=) —
d aX,'

j=1
If « € AK(M) and 8 € N'(M) then

dX,'.

d(anp)=danB+(-1)ands.



Co-differential

The co-differential is adjoint to the exterior derivative, in the sense
that for all « € AK=1(T) and 3 € AK(T)

[@an=[@an- [ anws

It is given explicitly by d* = (—1)kx"1dx.
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How do we work with differential forms?



Common identities

In practice it is convenient to construct our differential forms
inductively, and rely on identities instead of coordinates

> aAf=(-1)"BAaq;
dlaApB)=daAB+(—1)ka A dp;
aNxf = (a, B);

>
>
> i da = d(i.a);
>



Vector proxies

Given a basis Xq,- -+, X, of T,M the musical isomorphism is
defined by
(X)) = da(X),  XP(X)) = (X5, ;).

1

If dxq,---,dx, is the dual basis of X7,---, X, then

df =>"glx, X' =) gd.
j j



Vector calculus of differential forms

Given a vector field u let @ = ” and o/ = xu”. In R3 we have

div(iu) ~ d*a ~ dd

curl(u) ~ *da ~ dxd.

We also get

Au = grad div(u) — curl curl(v)
~ (dd* + d*d)a
~ (d*d + dd*)a/.



Integration by parts

We get the divergence theorem

/div(u):/ u-v <= /do/:/ o
T oT T oT

When dim M = 3 and dim T = 2 we recover the classic Stokes’
theorem

[rcurl(u)-yz/aTu - /Tda:/aTa.



Standardized transformations

Ifi: T— T and a is a top-form in T’ then

o = Q.
T !

The implication is that as long as we have single-valued pullbacks
in our mesh, then we get a discrete Stokes’ theorem for all k forms.

avy



Examples

If u satisfies
Au=f in M

u=0, div(u) =0 on IM,
then o := u” satisfies

Ao =f in M
a=0, da=0 onJdM.



Examples

If u satisfies

Au=f in M
u-v=0, curl(u) =0 on OM,

then o := u” satisfies
Ao =f in M
*a =0, xda =0 on IM.

b

If we instead plug in o := xu” we get the same equation as before!



Summary

Advantages of differential forms:
» Handles higher dimensions and general metrics;
> less pitfalls;
» FEEC.
Advantages of vectors:
> More intuitive;

» particularly suited for the Euclidean setting.
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Discrete differential forms



Polynomial forms

We have a triangle T with vertices [0, - - - , n], and with barycentric
coordinates Ag, -+, Ap. Given a polynomial g € P,[Ag, -, Ap],
and a face f with vertices [fy, - - , fx_1], we get a form

qdAg A---NdXg .

The span of all such forms is denoted by PNk



Polynomial forms

In this setting restrictions behave nicely. If i : f — T then

ik(@ng')=aleNd' |, i(dg) = dqlr.

If A; is linear, then we can compute d); by the fact that it is
orthogonal to the face opposite the i-th vertex.

2

VAR AN

Figure: dX»




Whitney forms

If f is a face with vertices [fy, - - , fx], it's corresponding Whitney
form is defined as
k . —_—
Ap = kDY (=1)AgdAg A AdAg A AdAg.
i=0

Assuming we take care of orientation, we get ff, Af = Oz for all
faces f, f' of equal dimension. This realizes the discrete exterior
derivative.

OBV



Assembling the global spaces

We identify each vertex in the mesh with a scalar that is piecewise
a barycentric coordinate. If these are continuous, then repeating
the previous constructions yields spaces with single-valued pullback.



A different example

If X is a vector field such that div(X) = ¢, and f is a scalar such
that df (X) = kf, then

/f: 1 fxX.
T kt+cJor

121 ~ def star(v, x):

122 r=x * x

123 gll =1 - r[a, :]

124 gl2 = -x[8, ] * x[1, :]

125 g22 =1 - r[1, :]

126 return np.array([

127 -g12 * y[@, :] - g22 * v[1, :],
128 gll * v[@e, :] + gl2 = v[1, :]
129 1) / np.sgrt(l - e[, :1 - r[1, :1)

130
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Virtual Elements



Overview

We recall the classic Poisson's equation: Find u € H'(T) such that

Au=f inT
U|3T:h.

The degrees of freedom are f € H™1(T) and h € L2(0T) (I think).



Overview

The key idea is to iteratively construct the test functions:

{ Av=0 inT

Av|e =0 forall edges e« T.




Virtual k forms

The corresponding Poisson equation on k forms reads

d*dv=Ff inT,
dv=g inT,
V’BT = h.



Virtual k forms

The corresponding Poisson equation on k forms reads

d*dv=Ff inT,
dv=g inT,
V’BT = h.

Repeating the previous construction now yields the Whitney forms

Wk ={veN(T):d*dv=0,d*v=0, VYT «T}.



Virtual k forms

Suppose we have an exact sequence

0 R zn 4, 70 0.

We then define our VE spaces by

VK(T) = {ve AN :d*dv e d*ZK d*v € d*ZK, v]pT € VK(OT)}.



Exactness

VK(T) = {ve A :d*dve d*ZK d*v e d*ZK, v]pT € VK(OT)}.
Let v € VX(T). Then

d*d(dv) =0
d*(dv) = d*dv € d*Zk+1
(dv)|oT = dv|oT € VKH(OT) by induction.

Therefore, d maps VK(T) — VKTL(T).



Exactness

VK(T) = {ve A :d*dve d*ZK d*v e d*ZK, v]pT € VK(OT)}.

Suppose v € VKX(T) is such that dv =0, where 1 < k < n— 1.
Then dv|sT = 0, so by induction there exists u|gT € VA~1(OT)
such that dulspT = v|sT. Let u € VK=I(T) such that

d*du = d*v;
d*u=0;
duloT = Vv]oT.

Then v = du. The base case of k = dim T is treated similarly,
using Stokes to handle the extra dof that comes from integration.



Exactness

VK(T) = {v e A d*dv € d*ZK1) d*v € d*Z¥, v]pT € VK(OT)}.
We have thus shown that the following sequence is exact

0 R vo 9, ... vn 0.

Note that this still works without our assumptions on ZX.



Degrees of Freedom

VK(T) = {ve A :d*dve d*ZK d*v e d*ZK, v]pT € VK(OT)}.

The set of dof corresponding to
vr—>/<v72> vz € Z*
T

is unisolvent on V().



Degrees of Freedom

VK(T) = {v e A d*dv € d*ZK1) d*v € d*Z¥, v]pT € VK(OT)}.
If v € VF(T) is such that [(v,z) =0 for all z € Zk then

0:/<v, d*dv>:/<dv,dv>—/ v A *dv,
T T oT
—_—

=0

and so dv = 0.



Degrees of Freedom

VK(T) = {ve A :d*dve d*ZK d*v e d*ZK, v]pT € VK(OT)}.

Then there exists u € Vg *(T) such that v = du. We get that

O:/T<du,z>:/T(u,d*z>—/8Tu/\*z,
Jor

=0

for all z € Zk. In particular [(u,d*du) = 0, and we conclude with
the same argument as before that v = 0.



Summary

We have an exact sequence

0 R vo 9, ... vn 0.

The dof let us compute the L2 projection of V¥ onto Z*.
Moreover, if ( € AK is such that d*d¢ € Zk then we can almost
compute

/T(dv,dg) :/va*dg—/T(v, d*d¢).
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Contraction

A vector field X contracts a k form a to a k — 1 form as follows:
Xao(Ye, -, Yie1) = a(X, Yo, -, Yi).
The contraction is related to the Hodge star by
Xoa=(=1)"" (X" Ax"ta) Vae A(M).
It also lets us express the Lie derivative as

Lxa=d(Xia)+ Xida.



Boundary conditions

Given i : 9T — T we have two equivalent ways of enforcing
boundary conditions

troT (V" A @) > "o “ tt b.c.,

T

troT(roa) %o “— nn b.c.,

where v is the normal vector field defined on OT.
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