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Overview

We fix a smooth orientable Riemannian manifold M. That is, we
have a locally Euclidean geometry with a pointwise inner product,
which behaves smoothly. This structure lets us describe PDE on
sub-manifolds, possibly of weaker regularity, in terms of

▶ differential k forms;

▶ the exterior derivative;

▶ the Hodge star.



Top-forms

A top-form µ encodes integration over M. It does this by assigning
a scalar to each set of n vectors Y1, · · · ,Yn. This yields a
well-defined integral provided

µ(AY1, · · · ,AYn) = det(A)µ(Y1, · · · ,Yn).

For example, in Euclidean space the volume form is given by

µEuc(Y1, · · · ,Yn) = det[Y1, · · · ,Yn].



k forms

Similarly, we imagine a k form α as something that assigns a scalar
to each set of k vectors Y1, · · · ,Yk . It should be alternating in the
sense that for all permutations σ we have

α(Y1, · · · ,Yk) = sgn(σ)α(Yσ(1), · · · ,Yσ(k)).

We denote the space of k forms on M by Λk(M).



Pull-back

A k form encodes integration over k dimensional sub-manifolds as
follows: If S is a sub-manifold of M, then a tangent vector in S is
also tangent to M. We say that the inclusion i : S → M induces a
map i∗ : Λk(M) → Λk(S) by

i∗α(Y1, · · · ,Yk) := α(i∗Y1, · · · , i∗Yk).



Wedge product

Given a k form α and a l form β, their wedge product is the k + l
form defined by

(α ∧ β)(Y1, · · · ,Yk+l)

=
1

k!l!

∑
σ

sgn(σ)α(Yσ(1), · · · ,Yσ(k))β(Yσ(k+1), · · · ,Yσ(k+l)).

For example, if dx and dy are 1-forms then

dx ∧ dy = dx ⊗ dy − dy ⊗ dx .



Basis

If dx1, · · · , dxn is a basis for Λ1|p then

Λk |p = span{dxi1 ∧ · · · ∧ dxik : i ∈ Ik},

where Ik is the set of multi-indices 1 ≤ i1 ≤ · · · ≤ ik ≤ n.

dx dx ∧ dy dx ∧ dy ∧ dz



Inner product

By duality we get an induced metric on Λ1(M). If dx1, · · · , dxn is
the dual basis of X1, · · · ,Xn and we write gij = ⟨Xi ,Xj⟩, then

⟨
∑
i

aidxi ,
∑
j

bjdxj⟩ =
∑
i ,j

aig
ijbj .

This further extends to general k forms by the Gram determinant

⟨dxi1 ∧ · · · ∧ dxik , dxj1 ∧ · · · ∧ dxjk ⟩ = det(⟨dxik , dxjl ⟩)kl .



Volume form

The volume form is the positively oriented top-form µg which
satisfies ⟨µg , µg ⟩ = 1. It provides a duality between 0-forms and
top forms. This means we can integrate 0-forms∫

f :=

∫
f µg .

It also lets us compare the two different expressions we have for
relating α ∈ Λk(M) to other forms

α, β 7→ ⟨α, β⟩µg β ∈ Λk(M),

α, γ 7→ α ∧ γ γ ∈ Λn−k(M).



Hodge star

The Hodge star ⋆ : Λk(M) → Λn−k(M) is uniquely defined by

α ∧ ⋆β = ⟨α, β⟩µg .

It can be interpreted in terms of a duality

span{dz} = {v ∈ Rn : v ⊥ {dx , dy}},
span{dx , dy} = {v ∈ Rn : v ⊥ dz}.

dz

⋆dz



Exterior derivative

The exterior derivative is adjoint to the boundary operator, in the
sense that for all α ∈ ΛdimT−1(T )∫

T
dα =

∫
∂T

α.

It can be defined in local coordinates by

d(f dxi1 ∧ · · · ∧ dxik ) =
n∑

j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik .



Exterior derivative

If f ∈ Λ0(M) then

df =
n∑

j=1

∂f

∂xi
dxi .

If α ∈ Λk(M) and β ∈ Λl(M) then

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.



Co-differential

The co-differential is adjoint to the exterior derivative, in the sense
that for all α ∈ Λk−1(T ) and β ∈ Λk(T )∫

T
⟨d⋆α, β⟩ =

∫
T
⟨α, dβ⟩ −

∫
∂T

α ∧ ⋆β.

It is given explicitly by d⋆ = (−1)k⋆−1d⋆.
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Common identities

In practice it is convenient to construct our differential forms
inductively, and rely on identities instead of coordinates

▶ α ∧ β = (−1)klβ ∧ α;

▶ d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ;

▶ α ∧ ⋆β = ⟨α, β⟩;
▶ i∗dα = d(i∗α);

▶ ...



Vector proxies

Given a basis X1, · · · ,Xn of TpM the musical isomorphism is
defined by

⟨dx ♯i ,Xj) = dxi (Xj), X ♭
i (Xj) = ⟨Xi ,Xj⟩.

If dx1, · · · , dxn is the dual basis of X1, · · · ,Xn then

dx ♯i =
∑
j

g ijXj , X ♭
i =

∑
j

gijdxj .



Vector calculus of differential forms

Given a vector field u let α = u♭ and α′ = ⋆u♭. In R3 we have

div(u) ∼ d⋆α ∼ dα′

curl(u) ∼ ⋆dα ∼ d⋆α′.

We also get

∆u = grad div(u)− curl curl(u)

∼ (dd⋆ + d⋆d)α

∼ (d⋆d + dd⋆)α′.



Integration by parts

We get the divergence theorem∫
T
div(u) =

∫
∂T

u · ν ⇐⇒
∫
T
dα′ =

∫
∂T

α′.

When dimM = 3 and dimT = 2 we recover the classic Stokes’
theorem∫

T
curl(u) · ν =

∫
∂T

u ⇐⇒
∫
T
dα =

∫
∂T

α.



Standardized transformations

If i : T → T ′ and α is a top-form in T ′ then∫
T
i∗α =

∫
T ′

α.

The implication is that as long as we have single-valued pullbacks
in our mesh, then we get a discrete Stokes’ theorem for all k forms.



Examples

If u satisfies {
∆u = f in M

u ≡ 0, div(u) ≡ 0 on ∂M,

then α := u♭ satisfies{
∆α = f ♭ in M

α ≡ 0, d⋆α ≡ 0 on ∂M.



Examples

If u satisfies {
∆u = f in M

u · ν ≡ 0, curl(u) ≡ 0 on ∂M,

then α := u♭ satisfies{
∆α = f ♭ in M

⋆α ≡ 0, ⋆dα ≡ 0 on ∂M.

If we instead plug in α′ := ⋆u♭ we get the same equation as before!



Summary

Advantages of differential forms:

▶ Handles higher dimensions and general metrics;

▶ less pitfalls;

▶ FEEC.

Advantages of vectors:

▶ More intuitive;

▶ particularly suited for the Euclidean setting.
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Polynomial forms

We have a triangle T with vertices [0, · · · , n], and with barycentric
coordinates λ0, · · · , λn. Given a polynomial q ∈ Pr [λ0, · · · , λn],
and a face f with vertices [f0, · · · , fk−1], we get a form

q dλf0 ∧ · · · ∧ dλfk−1
.

The span of all such forms is denoted by PrΛ
k .



Polynomial forms

In this setting restrictions behave nicely. If i : f → T then

i∗(q ∧ q′) = q|f ∧ q′|f , i∗(dq) = dq|f .

If λi is linear, then we can compute dλi by the fact that it is
orthogonal to the face opposite the i-th vertex.

Figure: dλ2



Whitney forms

If f is a face with vertices [f0, · · · , fk ], it’s corresponding Whitney
form is defined as

λf := k!
k∑

i=0

(−1)iλfidλf0 ∧ · · · ∧ d̂λfi ∧ · · · ∧ dλfk .

Assuming we take care of orientation, we get
∫
f ′ λf = δff ′ for all

faces f , f ′ of equal dimension. This realizes the discrete exterior
derivative.



Assembling the global spaces

We identify each vertex in the mesh with a scalar that is piecewise
a barycentric coordinate. If these are continuous, then repeating
the previous constructions yields spaces with single-valued pullback.



A different example

If X is a vector field such that div(X ) ≡ c, and f is a scalar such
that df (X ) = kf , then∫

T
f =

1

k + c

∫
∂T

f ⋆X ♭.
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Overview

We recall the classic Poisson’s equation: Find u ∈ H1(T ) such that{
∆u = f in T

u|∂T = h.

The degrees of freedom are f ∈ H−1(T ) and h ∈ L2(∂T ) (I think).



Overview

The key idea is to iteratively construct the test functions:{
∆v ≡ 0 in T

∆v |e ≡ 0 for all edges e ◁ T .



Virtual k forms

The corresponding Poisson equation on k forms reads
d⋆dv = f in T ,

d⋆v = g in T ,

v |∂T = h.

Repeating the previous construction now yields the Whitney forms

Wk = {v ∈ Λk(T ) : d⋆dv ≡ 0, d⋆v ≡ 0, ∀T ′ ◁ T}.



Virtual k forms

The corresponding Poisson equation on k forms reads
d⋆dv = f in T ,

d⋆v = g in T ,

v |∂T = h.

Repeating the previous construction now yields the Whitney forms

Wk = {v ∈ Λk(T ) : d⋆dv ≡ 0, d⋆v ≡ 0, ∀T ′ ◁ T}.



Virtual k forms

Suppose we have an exact sequence

0 R Zn · · · Z 0 0.d⋆

We then define our VE spaces by

V k(T ) := {v ∈ Λk : d⋆dv ∈ d⋆Z k+1, d⋆v ∈ d⋆Z k , v |∂T ∈ V k(∂T )}.



Exactness

V k(T ) := {v ∈ Λk : d⋆dv ∈ d⋆Z k+1, d⋆v ∈ d⋆Z k , v |∂T ∈ V k(∂T )}.

Let v ∈ V k(T ). Then
d⋆d(dv) ≡ 0

d⋆(dv) = d⋆dv ∈ d⋆Z k+1

(dv)|∂T = dv |∂T ∈ V k+1(∂T ) by induction.

Therefore, d maps V k(T ) → V k+1(T ).



Exactness

V k(T ) := {v ∈ Λk : d⋆dv ∈ d⋆Z k+1, d⋆v ∈ d⋆Z k , v |∂T ∈ V k(∂T )}.

Suppose v ∈ V k(T ) is such that dv ≡ 0, where 1 ≤ k ≤ n − 1.
Then dv |∂T ≡ 0, so by induction there exists u|∂T ∈ V k−1(∂T )
such that du|∂T = v |∂T . Let u ∈ V k−1(T ) such that

d⋆du = d⋆v ;

d⋆u ≡ 0;

du|∂T = v |∂T .

Then v = du. The base case of k = dimT is treated similarly,
using Stokes to handle the extra dof that comes from integration.



Exactness

V k(T ) := {v ∈ Λk : d⋆dv ∈ d⋆Z k+1, d⋆v ∈ d⋆Z k , v |∂T ∈ V k(∂T )}.

We have thus shown that the following sequence is exact

0 R V 0 · · · V n 0.d

Note that this still works without our assumptions on Z k .



Degrees of Freedom

V k(T ) := {v ∈ Λk : d⋆dv ∈ d⋆Z k+1, d⋆v ∈ d⋆Z k , v |∂T ∈ V k(∂T )}.

The set of dof corresponding to

v 7→
∫
T
⟨v , z⟩ ∀z ∈ Z k

is unisolvent on V k
0 (T ).



Degrees of Freedom

V k(T ) := {v ∈ Λk : d⋆dv ∈ d⋆Z k+1, d⋆v ∈ d⋆Z k , v |∂T ∈ V k(∂T )}.

If v ∈ V k
0 (T ) is such that

∫
⟨v , z⟩ = 0 for all z ∈ Z k then

0 =

∫
T
⟨v , d⋆dv⟩ =

∫
T
⟨dv , dv⟩ −

∫
∂T

v ∧ ⋆dv︸ ︷︷ ︸
=0

,

and so dv ≡ 0.



Degrees of Freedom

V k(T ) := {v ∈ Λk : d⋆dv ∈ d⋆Z k+1, d⋆v ∈ d⋆Z k , v |∂T ∈ V k(∂T )}.

Then there exists u ∈ V k−1
0 (T ) such that v = du. We get that

0 =

∫
T
⟨du, z⟩ =

∫
T
⟨u, d⋆z⟩ −

∫
∂T

u ∧ ⋆z︸ ︷︷ ︸
=0

,

for all z ∈ Z k . In particular
∫
⟨u, d⋆du⟩ = 0, and we conclude with

the same argument as before that v ≡ 0.



Summary

We have an exact sequence

0 R V 0 · · · V n 0.d

The dof let us compute the L2 projection of V k onto Z k .
Moreover, if ζ ∈ Λk is such that d⋆dζ ∈ Z k , then we can almost
compute ∫

T
⟨dv , dζ⟩ =

∫
∂T

v ∧ ⋆dζ −
∫
T
⟨v , d⋆dζ⟩.
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Contraction

A vector field X contracts a k form α to a k − 1 form as follows:

X⌟α(Y1, · · · ,Yk−1) = α(X ,Y1, · · · ,Yk).

The contraction is related to the Hodge star by

X⌟α = (−1)n−k⋆ (X ♭ ∧ ⋆−1α) ∀α ∈ Λk(M).

It also lets us express the Lie derivative as

LXα = d(X⌟α) + X⌟ dα.



Boundary conditions

Given i : ∂T → T we have two equivalent ways of enforcing
boundary conditions

tr∂T (ν
♭ ∧ α) ↔ i∗α ↔ tt b.c.,

tr∂T (ν⌟α) ↔ i∗⋆α ↔ nn b.c.,

where ν is the normal vector field defined on ∂T .
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