

Differential Forms

Karl Olav T.

karl.tyssvang@linacre.ox.ac.uk

NA Reading group

January 23, 2026

Table of Contents

What are Differential Forms?

How do we work with differential forms?

Discrete differential forms

Virtual Elements

Appendix

Overview

We fix a smooth orientable Riemannian manifold M . That is, we have a locally Euclidean geometry with a pointwise inner product, which behaves smoothly. This structure lets us describe PDE on sub-manifolds, possibly of weaker regularity, in terms of

- ▶ differential k forms;
- ▶ the exterior derivative;
- ▶ the Hodge star.

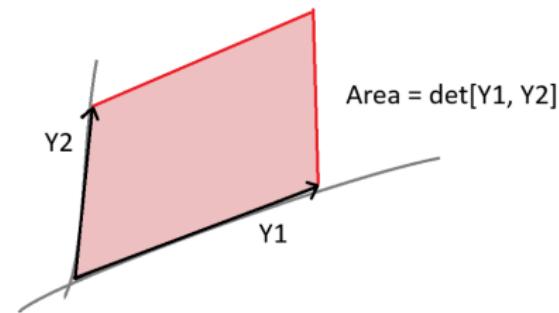
Top-forms

A top-form μ encodes integration over M . It does this by assigning a scalar to each set of n vectors Y_1, \dots, Y_n . This yields a well-defined integral provided

$$\mu(AY_1, \dots, AY_n) = \det(A) \mu(Y_1, \dots, Y_n).$$

For example, in Euclidean space the volume form is given by

$$\mu_{\text{Euc}}(Y_1, \dots, Y_n) = \det[Y_1, \dots, Y_n].$$



k forms

Similarly, we imagine a k form α as something that assigns a scalar to each set of k vectors Y_1, \dots, Y_k . It should be alternating in the sense that for all permutations σ we have

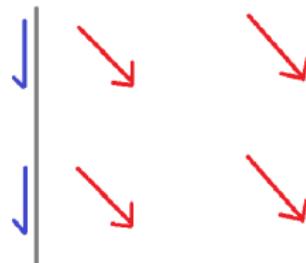
$$\alpha(Y_1, \dots, Y_k) = \text{sgn}(\sigma) \alpha(Y_{\sigma(1)}, \dots, Y_{\sigma(k)}).$$

We denote the space of k forms on M by $\Lambda^k(M)$.

Pull-back

A k form encodes integration over k dimensional sub-manifolds as follows: If S is a sub-manifold of M , then a tangent vector in S is also tangent to M . We say that the inclusion $i : S \rightarrow M$ induces a map $i^* : \Lambda^k(M) \rightarrow \Lambda^k(S)$ by

$$i^* \alpha(Y_1, \dots, Y_k) := \alpha(i_* Y_1, \dots, i_* Y_k).$$



Wedge product

Given a k form α and a l form β , their wedge product is the $k + l$ form defined by

$$(\alpha \wedge \beta)(Y_1, \dots, Y_{k+l}) = \frac{1}{k!l!} \sum_{\sigma} \text{sgn}(\sigma) \alpha(Y_{\sigma(1)}, \dots, Y_{\sigma(k)}) \beta(Y_{\sigma(k+1)}, \dots, Y_{\sigma(k+l)}).$$

For example, if dx and dy are 1-forms then

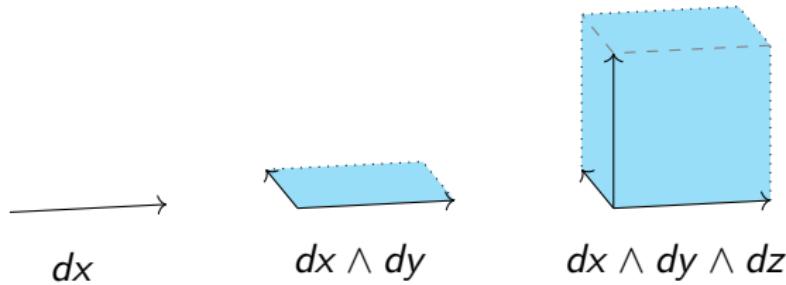
$$dx \wedge dy = dx \otimes dy - dy \otimes dx.$$

Basis

If dx_1, \dots, dx_n is a basis for $\Lambda^1|_p$ then

$$\Lambda^k|_p = \text{span}\{dx_{i_1} \wedge \dots \wedge dx_{i_k} : i \in \mathcal{I}_k\},$$

where \mathcal{I}_k is the set of multi-indices $1 \leq i_1 \leq \dots \leq i_k \leq n$.



Inner product

By duality we get an induced metric on $\Lambda^1(M)$. If dx_1, \dots, dx_n is the dual basis of X_1, \dots, X_n and we write $g_{ij} = \langle X_i, X_j \rangle$, then

$$\left\langle \sum_i a_i dx_i, \sum_j b_j dx_j \right\rangle = \sum_{i,j} a_i g^{ij} b_j.$$

This further extends to general k forms by the Gram determinant

$$\langle dx_{i_1} \wedge \dots \wedge dx_{i_k}, dx_{j_1} \wedge \dots \wedge dx_{j_k} \rangle = \det(\langle dx_{i_k}, dx_{j_l} \rangle)_{kl}.$$

Volume form

The volume form is the positively oriented top-form μ_g which satisfies $\langle \mu_g, \mu_g \rangle = 1$. It provides a duality between 0-forms and top forms. This means we can integrate 0-forms

$$\int f := \int f \mu_g.$$

It also lets us compare the two different expressions we have for relating $\alpha \in \Lambda^k(M)$ to other forms

$$\alpha, \beta \mapsto \langle \alpha, \beta \rangle \mu_g \quad \beta \in \Lambda^k(M),$$

$$\alpha, \gamma \mapsto \alpha \wedge \gamma \quad \gamma \in \Lambda^{n-k}(M).$$

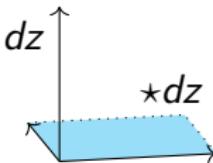
Hodge star

The Hodge star $\star : \Lambda^k(M) \rightarrow \Lambda^{n-k}(M)$ is uniquely defined by

$$\alpha \wedge \star \beta = \langle \alpha, \beta \rangle \mu_g.$$

It can be interpreted in terms of a duality

$$\begin{aligned}\text{span}\{dz\} &= \{v \in \mathbb{R}^n : v \perp \{dx, dy\}\}, \\ \text{span}\{dx, dy\} &= \{v \in \mathbb{R}^n : v \perp dz\}.\end{aligned}$$



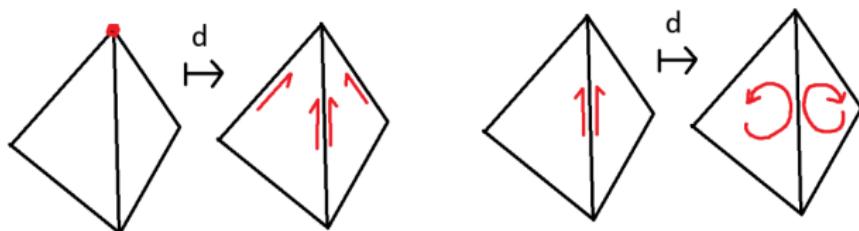
Exterior derivative

The exterior derivative is adjoint to the boundary operator, in the sense that for all $\alpha \in \Lambda^{\dim T-1}(T)$

$$\int_T d\alpha = \int_{\partial T} \alpha.$$

It can be defined in local coordinates by

$$d(f dx_{i_1} \wedge \cdots \wedge dx_{i_k}) = \sum_{j=1}^n \frac{\partial f}{\partial x_j} dx_j \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_k}.$$



Exterior derivative

If $f \in \Lambda^0(M)$ then

$$df = \sum_{j=1}^n \frac{\partial f}{\partial x_i} dx_i.$$

If $\alpha \in \Lambda^k(M)$ and $\beta \in \Lambda^l(M)$ then

$$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta.$$

Co-differential

The co-differential is adjoint to the exterior derivative, in the sense that for all $\alpha \in \Lambda^{k-1}(T)$ and $\beta \in \Lambda^k(T)$

$$\int_T \langle d^* \alpha, \beta \rangle = \int_T \langle \alpha, d\beta \rangle - \int_{\partial T} \alpha \wedge \star \beta.$$

It is given explicitly by $d^* = (-1)^k \star^{-1} d \star$.

Table of Contents

What are Differential Forms?

How do we work with differential forms?

Discrete differential forms

Virtual Elements

Appendix

Common identities

In practice it is convenient to construct our differential forms inductively, and rely on identities instead of coordinates

- ▶ $\alpha \wedge \beta = (-1)^{kl} \beta \wedge \alpha;$
- ▶ $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta;$
- ▶ $\alpha \wedge \star \beta = \langle \alpha, \beta \rangle;$
- ▶ $i_* d\alpha = d(i_* \alpha);$
- ▶ ...

Vector proxies

Given a basis X_1, \dots, X_n of $T_p M$ the musical isomorphism is defined by

$$\langle dx_i^\sharp, X_j \rangle = dx_i(X_j), \quad X_i^\flat(X_j) = \langle X_i, X_j \rangle.$$

If dx_1, \dots, dx_n is the dual basis of X_1, \dots, X_n then

$$dx_i^\sharp = \sum_j g^{ij} X_j, \quad X_i^\flat = \sum_j g_{ij} dx_j.$$

Vector calculus of differential forms

Given a vector field u let $\alpha = u^\flat$ and $\alpha' = \star u^\flat$. In \mathbb{R}^3 we have

$$\begin{aligned}\operatorname{div}(u) &\sim d^\star \alpha &\sim d\alpha' \\ \operatorname{curl}(u) &\sim \star d\alpha &\sim d\star\alpha'.\end{aligned}$$

We also get

$$\begin{aligned}\Delta u &= \operatorname{grad} \operatorname{div}(u) - \operatorname{curl} \operatorname{curl}(u) \\ &\sim (dd^\star + d^\star d)\alpha \\ &\sim (d^\star d + dd^\star)\alpha'.\end{aligned}$$

Integration by parts

We get the divergence theorem

$$\int_T \operatorname{div}(u) = \int_{\partial T} u \cdot \nu \iff \int_T d\alpha' = \int_{\partial T} \alpha'.$$

When $\dim M = 3$ and $\dim T = 2$ we recover the classic Stokes' theorem

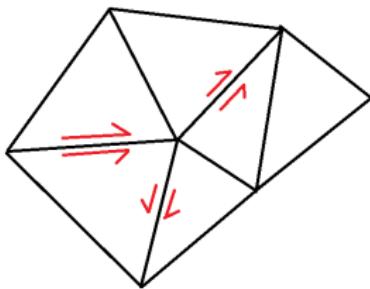
$$\int_T \operatorname{curl}(u) \cdot \nu = \int_{\partial T} u \iff \int_T d\alpha = \int_{\partial T} \alpha.$$

Standardized transformations

If $i : T \rightarrow T'$ and α is a top-form in T' then

$$\int_T i_* \alpha = \int_{T'} \alpha.$$

The implication is that as long as we have single-valued pullbacks in our mesh, then we get a discrete Stokes' theorem for all k forms.



Examples

If u satisfies

$$\begin{cases} \Delta u = f & \text{in } M \\ u \equiv 0, \operatorname{div}(u) \equiv 0 & \text{on } \partial M, \end{cases}$$

then $\alpha := u^\flat$ satisfies

$$\begin{cases} \Delta \alpha = f^\flat & \text{in } M \\ \alpha \equiv 0, d^* \alpha \equiv 0 & \text{on } \partial M. \end{cases}$$

Examples

If u satisfies

$$\begin{cases} \Delta u = f & \text{in } M \\ u \cdot \nu \equiv 0, \operatorname{curl}(u) \equiv 0 & \text{on } \partial M, \end{cases}$$

then $\alpha := u^\flat$ satisfies

$$\begin{cases} \Delta \alpha = f^\flat & \text{in } M \\ \star \alpha \equiv 0, \star d\alpha \equiv 0 & \text{on } \partial M. \end{cases}$$

If we instead plug in $\alpha' := \star u^\flat$ we get the same equation as before!

Summary

Advantages of differential forms:

- ▶ Handles higher dimensions and general metrics;
- ▶ less pitfalls;
- ▶ FEEC.

Advantages of vectors:

- ▶ More intuitive;
- ▶ particularly suited for the Euclidean setting.

Table of Contents

What are Differential Forms?

Discrete differential forms

Virtual Elements

Appendix

Polynomial forms

We have a triangle T with vertices $[0, \dots, n]$, and with barycentric coordinates $\lambda_0, \dots, \lambda_n$. Given a polynomial $q \in \mathbb{P}_r[\lambda_0, \dots, \lambda_n]$, and a face f with vertices $[f_0, \dots, f_{k-1}]$, we get a form

$$q \, d\lambda_{f_0} \wedge \cdots \wedge d\lambda_{f_{k-1}}.$$

The span of all such forms is denoted by $\mathcal{P}_r \Lambda^k$.

Polynomial forms

In this setting restrictions behave nicely. If $i : f \rightarrow T$ then

$$i_*(q \wedge q') = q|_f \wedge q'|_f, \quad i_*(dq) = dq|_f.$$

If λ_i is linear, then we can compute $d\lambda_i$ by the fact that it is orthogonal to the face opposite the i -th vertex.

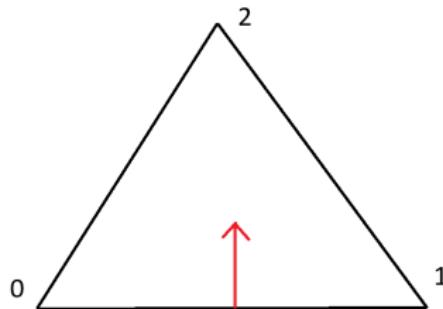


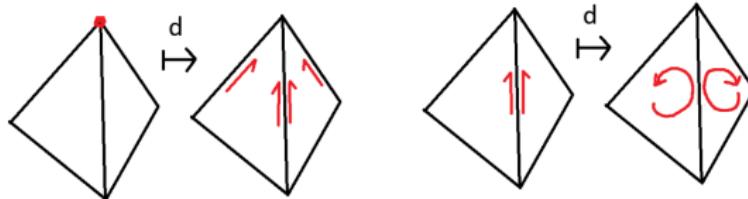
Figure: $d\lambda_2$

Whitney forms

If f is a face with vertices $[f_0, \dots, f_k]$, its corresponding Whitney form is defined as

$$\lambda_f := k! \sum_{i=0}^k (-1)^i \lambda_{f_i} d\lambda_{f_0} \wedge \cdots \wedge \widehat{d\lambda_{f_i}} \wedge \cdots \wedge d\lambda_{f_k}.$$

Assuming we take care of orientation, we get $\int_{f'} \lambda_f = \delta_{ff'}$ for all faces f, f' of equal dimension. This realizes the discrete exterior derivative.



Assembling the global spaces

We identify each vertex in the mesh with a scalar that is piecewise a barycentric coordinate. If these are continuous, then repeating the previous constructions yields spaces with single-valued pullback.

A different example

If X is a vector field such that $\operatorname{div}(X) \equiv c$, and f is a scalar such that $df(X) = kf$, then

$$\int_T f = \frac{1}{k+c} \int_{\partial T} f \star X^\flat.$$

```
121  v  def star(v, x):
122      r = x * x
123      g11 = 1 - r[0, :]
124      g12 = -x[0, :] * x[1, :]
125      g22 = 1 - r[1, :]
126      return np.array([
127          -g12 * v[0, :] - g22 * v[1, :],
128          g11 * v[0, :] + g12 * v[1, :]
129      ) / np.sqrt(1 - r[0, :] - r[1, :])
130
```

Table of Contents

What are Differential Forms?

Discrete differential forms

Virtual Elements

Appendix

Overview

We recall the classic Poisson's equation: Find $u \in H^1(T)$ such that

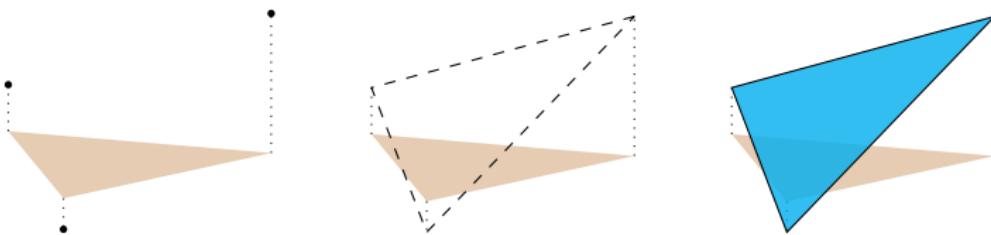
$$\begin{cases} \Delta u = f & \text{in } T \\ u|_{\partial T} = h. \end{cases}$$

The degrees of freedom are $f \in H^{-1}(T)$ and $h \in L^2(\partial T)$ (I think).

Overview

The key idea is to iteratively construct the test functions:

$$\begin{cases} \Delta v \equiv 0 & \text{in } T \\ \Delta v|_e \equiv 0 & \text{for all edges } e \triangleleft T. \end{cases}$$



Virtual k forms

The corresponding Poisson equation on k forms reads

$$\begin{cases} d^* dv = f & \text{in } T, \\ d^* v = g & \text{in } T, \\ v|_{\partial T} = h. \end{cases}$$

Virtual k forms

The corresponding Poisson equation on k forms reads

$$\begin{cases} d^* dv = f & \text{in } T, \\ d^* v = g & \text{in } T, \\ v|_{\partial T} = h. \end{cases}$$

Repeating the previous construction now yields the Whitney forms

$$\mathfrak{W}^k = \{v \in \Lambda^k(T) : d^* dv \equiv 0, d^* v \equiv 0, \forall T' \triangleleft T\}.$$

Virtual k forms

Suppose we have an exact sequence

$$0 \longrightarrow \mathbb{R} \hookrightarrow Z^n \xrightarrow{d^*} \cdots \longrightarrow Z^0 \longrightarrow 0.$$

We then define our VE spaces by

$$V^k(T) := \{v \in \Lambda^k : d^* dv \in d^* Z^{k+1}, d^* v \in d^* Z^k, v|_{\partial T} \in V^k(\partial T)\}.$$

Exactness

$$V^k(T) := \{v \in \Lambda^k : d^* dv \in d^* Z^{k+1}, d^* v \in d^* Z^k, v|_{\partial T} \in V^k(\partial T)\}.$$

Let $v \in V^k(T)$. Then

$$\begin{cases} d^* d(dv) \equiv 0 \\ d^*(dv) = d^* dv \in d^* Z^{k+1} \\ (dv)|_{\partial T} = dv|_{\partial T} \in V^{k+1}(\partial T) \quad \text{by induction.} \end{cases}$$

Therefore, d maps $V^k(T) \rightarrow V^{k+1}(T)$.

Exactness

$$V^k(T) := \{v \in \Lambda^k : d^* dv \in d^* Z^{k+1}, d^* v \in d^* Z^k, v|_{\partial T} \in V^k(\partial T)\}.$$

Suppose $v \in V^k(T)$ is such that $dv \equiv 0$, where $1 \leq k \leq n-1$.

Then $dv|_{\partial T} \equiv 0$, so by induction there exists $u|_{\partial T} \in V^{k-1}(\partial T)$ such that $du|_{\partial T} = v|_{\partial T}$. Let $u \in V^{k-1}(T)$ such that

$$\begin{cases} d^* du = d^* v; \\ d^* u \equiv 0; \\ du|_{\partial T} = v|_{\partial T}. \end{cases}$$

Then $v = du$. The base case of $k = \dim T$ is treated similarly, using Stokes to handle the extra dof that comes from integration.

Exactness

$$V^k(T) := \{v \in \Lambda^k : d^* dv \in d^* Z^{k+1}, d^* v \in d^* Z^k, v|_{\partial T} \in V^k(\partial T)\}.$$

We have thus shown that the following sequence is exact

$$0 \longrightarrow \mathbb{R} \hookrightarrow V^0 \xrightarrow{d} \cdots \longrightarrow V^n \longrightarrow 0.$$

Note that this still works without our assumptions on Z^k .

Degrees of Freedom

$$V^k(T) := \{v \in \Lambda^k : d^* dv \in d^* Z^{k+1}, d^* v \in d^* Z^k, v|_{\partial T} \in V^k(\partial T)\}.$$

The set of dof corresponding to

$$v \mapsto \int_T \langle v, z \rangle \quad \forall z \in Z^k$$

is unisolvant on $V_0^k(T)$.

Degrees of Freedom

$$V^k(T) := \{v \in \Lambda^k : d^* dv \in d^* Z^{k+1}, d^* v \in d^* Z^k, v|_{\partial T} \in V^k(\partial T)\}.$$

If $v \in V_0^k(T)$ is such that $\int \langle v, z \rangle = 0$ for all $z \in Z^k$ then

$$0 = \int_T \langle v, d^* dv \rangle = \int_T \langle dv, dv \rangle - \underbrace{\int_{\partial T} v \wedge \star dv}_{=0},$$

and so $dv \equiv 0$.

Degrees of Freedom

$$V^k(T) := \{v \in \Lambda^k : d^*dv \in d^*Z^{k+1}, d^*v \in d^*Z^k, v|_{\partial T} \in V^k(\partial T)\}.$$

Then there exists $u \in V_0^{k-1}(T)$ such that $v = du$. We get that

$$0 = \int_T \langle du, z \rangle = \int_T \langle u, d^*z \rangle - \underbrace{\int_{\partial T} u \wedge \star z}_{=0},$$

for all $z \in Z^k$. In particular $\int \langle u, d^*du \rangle = 0$, and we conclude with the same argument as before that $v \equiv 0$.

Summary

We have an exact sequence

$$0 \longrightarrow \mathbb{R} \hookrightarrow V^0 \xrightarrow{d} \cdots \longrightarrow V^n \longrightarrow 0.$$

The dof let us compute the L^2 projection of V^k onto Z^k .

Moreover, if $\zeta \in \Lambda^k$ is such that $d^*d\zeta \in Z^k$, then we can almost compute

$$\int_T \langle dv, d\zeta \rangle = \int_{\partial T} v \wedge \star d\zeta - \int_T \langle v, d^*d\zeta \rangle.$$

Table of Contents

What are Differential Forms?

Discrete differential forms

Virtual Elements

Appendix

Contraction

A vector field X contracts a k form α to a $k - 1$ form as follows:

$$X \lrcorner \alpha(Y_1, \dots, Y_{k-1}) = \alpha(X, Y_1, \dots, Y_k).$$

The contraction is related to the Hodge star by

$$X \lrcorner \alpha = (-1)^{n-k} \star (X^\flat \wedge \star^{-1} \alpha) \quad \forall \alpha \in \Lambda^k(M).$$

It also lets us express the Lie derivative as

$$\mathcal{L}_X \alpha = d(X \lrcorner \alpha) + X \lrcorner d\alpha.$$

Boundary conditions

Given $i : \partial T \rightarrow T$ we have two equivalent ways of enforcing boundary conditions

$$\begin{array}{lllll} \mathrm{tr}_{\partial T}(\nu^\flat \wedge \alpha) & \leftrightarrow & i^* \alpha & \leftrightarrow & \text{tt b.c.}, \\ \mathrm{tr}_{\partial T}(\nu \lrcorner \alpha) & \leftrightarrow & i^* \star \alpha & \leftrightarrow & \text{nn b.c.}, \end{array}$$

where ν is the normal vector field defined on ∂T .