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Hamiltonian and Poisson Bracket

Phase Space

▶ Consider a particle moving along a line

▶ The state is given by position and momentum:
(x, p).

▶ (x, p) forms a two-dimensional phase space
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Hamiltonian

H(x, p) =
p2

2m
+ V (x)

▶ Total energy of the system

Newton’s second law

ẋ =
p

m
ṗ = −dV (x)

dx

Hamilton’s Equations
dx

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂x
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Hamiltonian and Poisson Bracket

Poisson Bracket (anti-symmetric)

{f, g} =
∂f

∂x

∂g

∂p
− ∂f

∂p

∂g
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dt
= {p,H}.
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We can rewrite the system

dx

dt
= {x,H}, dp

dt
= {p,H}.

What if I have a quantity Q(x(t), p(t))? How does it change w.r.t time?
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Hamiltonian and Poisson Bracket

For a general quantity Q(x(t), p(t))

d

dt
Q(x(t), p(t)) =

∂Q

∂x

dx

dt
+
∂Q

∂p

dp

dt

=
∂Q

∂x

∂H

∂p
− ∂Q

∂p

∂H

∂x

= {Q,H}.

.
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=
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∂p

∂H
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= {Q,H}.

Therefore, we have
dQ

dt
= {Q,H}.

Q is conserved ⇐⇒ {Q,H} = 0.

The phase space does not need to be parametrized by t, it can be any parameter

dQ

dλ
= {Q,G}

where G is called a generator.
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Hamiltonian and Poisson Bracket

We can choose the generator as G = p:

dx

dλ
= {x, p} =

∂x

∂x

∂p

∂p
− ∂x

∂p

∂p

∂x
= 1,

dp

dλ
= {p, p} = 0.
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Hamiltonian and Poisson Bracket

We can choose the generator as G = p:

dx

dλ
= {x, p} =

∂x

∂x

∂p

∂p
− ∂x

∂p

∂p

∂x
= 1,

dp

dλ
= {p, p} = 0.

Integrating

x(λ) = x0 + λ, p(λ) = p0.

Space translation
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Hamiltonian and Poisson Bracket

▶ G = H (Hamiltonian): H conservation ⇐⇒ time translation.

▶ G = p (momentum): p conservation ⇐⇒ space translation.

▶ G = L (angular momentum): L conservation ⇐⇒ rotation.
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Hamiltonian and Poisson Bracket

▶ G = H (Hamiltonian): H conservation ⇐⇒ time translation.

▶ G = p (momentum): p conservation ⇐⇒ space translation.

▶ G = L (angular momentum): L conservation ⇐⇒ rotation.

Noether’s theorem

Conservation ⇐⇒ symmetry
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Hamiltonian and Poisson Bracket

Poisson bracket
dF

dt
= {F,H}

▶ Beautiful!

▶ Energy: due to the antisymmetry of the Poisson bracket

d

dt
H = {H,H} = 0

▶ Casimir: due to the kernel of the Poisson bracket.

d

dt
C = {C,H} = 0, ∀H.
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Hamiltonian and Poisson Bracket

2D incompressible Euler (vorticity form)

∂tw + u · ∇w = 0, ∇ · u = 0.
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Introducing scalar stream function ψ
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Rewrite the advection term

u · ∇w = (∂yψ)∂xw − (∂xψ)∂yw = −[w,ψ]

where the Jacobian bracket is defined as

[f, g] = ∂x1f∂x2g − ∂x1g∂x2f.

The 2D Euler equation can be written as

∂tw = [ψ,w]
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Hamiltonian and Poisson Bracket

▶ Bracket for functional: Lie-Poisson bracket

df

dt
(w) = {f,H}(w) =

〈
w,

[
δf

δw
,
δH

δw

]〉

▶ We choose the Hamiltonian

H =
1

2

∫
Ω

|u|2 dx =
1

2

∫
Ω

|∇ψ|2 dx =
1

2

∫
Ω

ψw dx

▶ Compute the variation
δH

δw
= ψ.

▶ LHS:
df

dt
(w) =

〈
δf

δw
, ∂tw

〉
▶ RHS: 〈

w,

[
δf

δw
, ψ

]〉
=

〈
δf

δw
, [ψ,w]

〉
▶ Equate them:

∂tw = [ψ,w]

▶ We then recover the 2D Euler equation!
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Hamiltonian and Poisson Bracket

Energy (antisymmetry of the Poisson bracket)

The kinetic energy can be written in terms of ψ and ω:

E =
1

2

∫
Ω

|u|2 dx =
1

2Ω
|∇⊥ψ|2dx =

1

2

∫
Ω

ψ ω dx.

▶ We used ⟨a, [b, c]⟩ = ⟨b, [c, a]⟩ = ⟨c, [a, b]⟩
▶ This is a dynamical invariant, tied to the Hamiltonian structure.
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Hamiltonian and Poisson Bracket

Casimir (degeneracy of the Poisson bracket)

Consider a general functional of vorticity:

CΦ[ω] =

∫
Ω

Φ(ω) dx.

▶ These are Casimir invariants, independent of the Hamiltonian.

▶ Example: Φ(s) = 1
2
s2 gives the enstrophy (Φ(s) = sp, p = 3, 4...)

Mingdong He (Oxford) 11 / 34



Hamiltonian and Poisson Bracket

Casimir (degeneracy of the Poisson bracket)

Consider a general functional of vorticity:

CΦ[ω] =

∫
Ω

Φ(ω) dx.

Time evolution:

d

dt
CΦ =

〈
w,

[
Φ′(w),

δH

δu

]〉
=

〈
δH

δw
, [w,Φ′(w)]

〉
= 0, ∀H.

since
⟨a, [b, c]⟩ = ⟨b, [c, a]⟩ = ⟨c, [a, b]⟩

[w,Φ′(w)] = wxΦ
′′(w)wy − wyΦ

′′(w)wx = 0.

▶ These are Casimir invariants, independent of the Hamiltonian.

▶ Example: Φ(s) = 1
2
s2 gives the enstrophy (Φ(s) = sp, p = 3, 4...)

Mingdong He (Oxford) 11 / 34



Hamiltonian and Poisson Bracket

Casimir (degeneracy of the Poisson bracket)

Consider a general functional of vorticity:

CΦ[ω] =

∫
Ω

Φ(ω) dx.

Time evolution:

d

dt
CΦ =

〈
w,

[
Φ′(w),

δH

δu

]〉
=

〈
δH

δw
, [w,Φ′(w)]

〉
= 0, ∀H.

since
⟨a, [b, c]⟩ = ⟨b, [c, a]⟩ = ⟨c, [a, b]⟩

[w,Φ′(w)] = wxΦ
′′(w)wy − wyΦ

′′(w)wx = 0.

▶ These are Casimir invariants, independent of the Hamiltonian.

▶ Example: Φ(s) = 1
2
s2 gives the enstrophy (Φ(s) = sp, p = 3, 4...)

Mingdong He (Oxford) 11 / 34



Hamiltonian and Poisson Bracket

Casimir (degeneracy of the Poisson bracket)

Consider a general functional of vorticity:

CΦ[ω] =

∫
Ω

Φ(ω) dx.

Time evolution:

d

dt
CΦ =

〈
w,

[
Φ′(w),

δH

δu

]〉
=

〈
δH

δw
, [w,Φ′(w)]

〉
= 0, ∀H.

since
⟨a, [b, c]⟩ = ⟨b, [c, a]⟩ = ⟨c, [a, b]⟩

[w,Φ′(w)] = wxΦ
′′(w)wy − wyΦ

′′(w)wx = 0.

▶ These are Casimir invariants, independent of the Hamiltonian.

▶ Example: Φ(s) = 1
2
s2 gives the enstrophy (Φ(s) = sp, p = 3, 4...)

Mingdong He (Oxford) 11 / 34



Mathematical challenges: computation of equilibria

Section 3

Mathematical challenges: computation of equilibria
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Mathematical challenges: computation of equilibria

Equilibria of Euler equation

u× w = ∇h, w = ∇× u, ∇ · u = 0.

Equilibria of ideal MHD equation
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▶ Long term behaviour of solution of the time-dependent problem.

▶ Structures of the steady state leads to direct industrial application: fusion devices.

▶ Key challenges: ill-posedness (nonuniqueness), espectially for 3D problem.

▶ Solutions:

▶ We add some physical constraints (variational principle).
▶ We use artificial relaxation (B → B∗) as t→ ∞.
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▶ Structures of the steady state leads to direct industrial application: fusion devices.

▶ Key challenges: ill-posedness (nonuniqueness), espectially for 3D problem.

▶ Solutions:

▶ We add some physical constraints (variational principle).
▶ We use artificial relaxation (B → B∗) as t→ ∞.

A great idea: can we modify the Hamiltonian system to an artificial dynamical system
that relaxes to an equilibrium of the considered physical system?
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Mathematical challenges: computation of equilibria

▶ Bressan, C., Kraus, M., Maj, O., & Morrison, P. J. (2025). Metriplectic relaxation to
equilibria. arXiv preprint arXiv:2506.09787.

▶ Bressan, C., Kraus, M., Morrison, P. J., & Maj, O. (2018, November). Relaxation to
magnetohydrodynamics equilibria via collision brackets. In Journal of Physics: Conference
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Series (Vol. 1125, No. 1, p. 012002). IOP Publishing.

Metriplectic dynamics (artificial relaxation): u∞

▶ dissipating entropy S(u).

▶ conserving the Hamiltonian H(u).

Variational principle (physical constraint): u∗

min{S(u) : u ∈ V, H(u) = H(u0)}
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Steady state via variational principle

Minimization

min{S(u) : u ∈ V, H(u) = H(u0)} =⇒ δS

δu
(ue) = λ

δH

δu
(ue)

▶ 2D steady Euler:

J [ψ] =
1

2

∫
Ω

|∇ψ|2 − λψ2dx =⇒ ∆ψ = −λψ.
.

▶ 2D Grad-Shafranov:

J [u] =
1

2

∫
Ω

u2(R, z)

CR2 +D

dRdz

R
− λu(R, z)ψ(R, z)

dRdz

R
=⇒ −∆∗ψ = λ(CR2 +D)ψ.

▶ 3D Force-free field:

J [u] =
1

2

∫
Ω

|B|2 − λB ·Adx =⇒ ∇×B = λB.
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Metriplectic dynamics: artificial relaxation

A modified Hamiltonian system

d

dt
F (u) = {F (u), H(u)}+ (F (u), S(u))

▶ {·, ·}: Poisson bracket (anti-symmetric).

▶ (·, ·): metric bracket (symmetric, negative semi-definite).

▶ The entropy is dissipated at constant Hamiltonian.

▶ If S is bounded below, the system will evolve on the manifold H(u) = H(u0), toward a state that satisfies
(S, S) = 0, i.e.

{F,H}(ue) + (F, S)(ue) = 0.
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Metriplectic dynamics: artificial relaxation

We can define the bracket

{A,B} =

∫
Ω

δA

δu
(x)J(u)

δB

δu
(x)dµ(x),

(A,B) = −
∫
Ω

δA

δu
(x)K(u)

δB

δu
(x)dµ(x)

▶ J(u): antisymmetric operator

▶ K(u): symmetric operator, positive & semi-definite.
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, J(u)

δH

δu
⟩,

(F, S)(u) = −⟨δF
δu
,K(u)

δS

δu
⟩.

Strong form of the dynamics

d

dt
F (u) = {F,H}+ (F, S) =⇒ d

dt
u = J(u)

δH

δu
−K(u)

δS

δu
.
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Metriplectic dynamics: artificial relaxation

Steady state

If ue is the steady state of the variational principle, then it is also the steady state of the metriplectic dynamics.
The converse is not true.
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Metriplectic dynamics: artificial relaxation

Steady state

If ue is the steady state of the variational principle, then it is also the steady state of the metriplectic dynamics.
The converse is not true.

Proof: since ue statisfies δS
δu

= λ δH
δu

, then

d

dt
u = J(u)

δH

δu
−K(u)

δS

δu
|ue

= (J(u)− λK(u))
δH

δu

= 0,

due to the compatibility condition

{F, S} = 0 =⇒ J(u)
δS

δu
= 0,

(F,H) = 0 =⇒ K(u)
δH

δu
= 0.
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Metriplectic dynamics: artificial relaxation

Therefore,
u∗variational ⊂ u∗dynamics

▶ Unfortunately, complete relaxation does not always happen.

▶ It depends on the null space of the metric brackets.
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▶ Diffusion-like brackets: computationally friendly.

Mingdong He (Oxford) 23 / 34



How to construct the metric bracket?

▶ Collision-like brackets: computationally expensive due to nonlocality.

▶ Diffusion-like brackets: computationally friendly.

Mingdong He (Oxford) 23 / 34



How to construct the metric bracket?

▶ Collision-like brackets: computationally expensive due to nonlocality.

▶ Diffusion-like brackets: computationally friendly.

Diffusion-like bracket
The diffusion bracket is defined as

(F,G) = −
∫
Ω

Li

(
δF

δu

)
DijLi

(
δG

δu

)
dµ(x)

where

▶ Li: V → V ′ is some linear operator.

▶ H = H(u) and δH
δu

∈ V .

▶ D = Dij(x) s.t. it is

▶ symmetric, positive semi-definite
▶ giDij = 0 where gi = Li

(
δH
δu

)
.

▶ µ: a positive measure on Ω.
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How to construct the metric bracket?

Properties of diffusion-like bracket

▶ (F,G) = (G,F ).

▶ (H,G) = 0 where H is the Hamiltonian.

▶ (F, F ) ≤ 0.
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How to construct the metric bracket?

Properties of diffusion-like bracket

▶ (F,G) = (G,F ).

▶ (H,G) = 0 where H is the Hamiltonian.

▶ (F, F ) ≤ 0.

Evolution equation
d

dt
F = (F, S), ∀F = F (u).

This implies dissipative entropy at constant Hamiltonian

d

dt
H = 0,

d

dt
S ≤ 0.

Two diffusion-like brackets: div-grad bracket and curl-curl-like bracket.
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How to construct the metric bracket?

curl-curl bracket L = ∇×

(F, S) = −
∫
Ω

(
∇× δF

δu

)
·D

(
∇× δS

δu

)
dx = −

∫
Ω

δF

δu
∇×

[
D

(
∇× δS

δu

)]
dx

▶ D = |g|2I − g ⊗ g = |g|2
(
I − g⊗g

|g2|

)
is the orthogonal projection.

▶ g = ∇×A = B

▶ S = 1
2

∫
Ω
B ·Bdx and H = 1

2

∫
Ω
A ·Bdx.
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∂t
= −∇× [D∇×B]

By using the identity
Dh = |g|2h− (g ⊗ g)h = |g|2h− (g · h)g = −g × (g × h)

We end up with

∂B

∂t
= ∇×

(
B × (B × (∇×B))

)
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How to construct the metric bracket?

∂B

∂t
−∇× (u×B) = 0,

u = (∇×B)×B.

▶ Magneto-frictional equation.

▶ Dissipative entropy (magnetic energy): d
dt

∫
B ·B dx = −∥(∇×B)×B∥2.

▶ Conserved Hamiltonian (magnetic helicity): d
dt

∫
A ·B dx = 0.
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Another application: selective decay for turbulence

Selective decay (non-ideal)

▶ In 3D fluid or MHD, energy and helicity decay at different rates.

▶ One quantity is dissipative while another one is approximately constant.

▶ Statistical mechanics predictions: large-scale behaviour should be presented instead of random small scale behaviour.

▶ Numerical experiments: small-scale behaviour.
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▶ In 3D fluid or MHD, energy and helicity decay at different rates.

▶ One quantity is dissipative while another one is approximately constant.

▶ Statistical mechanics predictions: large-scale behaviour should be presented instead of random small scale behaviour.

▶ Numerical experiments: small-scale behaviour.

Question
We know that Lie-Poisson bracket yield two types of conservation, can we modify to impose such selective decay?
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Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:

df(w)

dt
=

〈
w,

[
δf

δw
,
δH

δw

]〉
︸ ︷︷ ︸

{f,H}

−θ
〈[

δf

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉

▶ L = (1− α2∆)s to define Sobolev Hs inner product.

▶ L = (1 + α2|k|2)s: high wavenumber dissipates faster (small scale)

▶ This can be used to control the selective scale

▶ Gay-Balmaz F, Holm D D. Selective decay by Casimir dissipation in inviscid fluids[J]. Nonlinearity, 2013,
26(2): 495.

▶ Application to magnetic equilibrium δ(H + C) = 0: Gay-Balmaz, François, and Darryl D. Holm. ”A
geometric theory of selective decay with applications in MHD.” Nonlinearity 27.8 (2014): 1747.

Mingdong He (Oxford) 28 / 34



Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:

df(w)

dt
=

〈
w,

[
δf

δw
,
δH

δw

]〉
︸ ︷︷ ︸

{f,H}

−θ
〈[

δf

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉

We immediately have

d

dt
H(w) = 0,

dC(w)

dt
= −θ

〈[
δC

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉
= −θ

∥∥∥∥[δCδw , δHδw
]∥∥∥∥2

L

▶ L = (1− α2∆)s to define Sobolev Hs inner product.

▶ L = (1 + α2|k|2)s: high wavenumber dissipates faster (small scale)

▶ This can be used to control the selective scale

▶ Gay-Balmaz F, Holm D D. Selective decay by Casimir dissipation in inviscid fluids[J]. Nonlinearity, 2013,
26(2): 495.

▶ Application to magnetic equilibrium δ(H + C) = 0: Gay-Balmaz, François, and Darryl D. Holm. ”A
geometric theory of selective decay with applications in MHD.” Nonlinearity 27.8 (2014): 1747.

Mingdong He (Oxford) 28 / 34



Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:

df(w)

dt
=

〈
w,

[
δf

δw
,
δH

δw

]〉
︸ ︷︷ ︸

{f,H}

−θ
〈[

δf

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉

We immediately have

d

dt
H(w) = 0,

dC(w)

dt
= −θ

〈[
δC

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉
= −θ

∥∥∥∥[δCδw , δHδw
]∥∥∥∥2

L

▶ L = (1− α2∆)s to define Sobolev Hs inner product.

▶ L = (1 + α2|k|2)s: high wavenumber dissipates faster (small scale)

▶ This can be used to control the selective scale

▶ Gay-Balmaz F, Holm D D. Selective decay by Casimir dissipation in inviscid fluids[J]. Nonlinearity, 2013,
26(2): 495.

▶ Application to magnetic equilibrium δ(H + C) = 0: Gay-Balmaz, François, and Darryl D. Holm. ”A
geometric theory of selective decay with applications in MHD.” Nonlinearity 27.8 (2014): 1747.

Mingdong He (Oxford) 28 / 34



Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:

df(w)

dt
=

〈
w,

[
δf

δw
,
δH

δw

]〉
︸ ︷︷ ︸

{f,H}

−θ
〈[

δf

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉

We immediately have

d

dt
H(w) = 0,

dC(w)

dt
= −θ

〈[
δC

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉
= −θ

∥∥∥∥[δCδw , δHδw
]∥∥∥∥2

L

▶ L = (1− α2∆)s to define Sobolev Hs inner product.

▶ L = (1 + α2|k|2)s: high wavenumber dissipates faster (small scale)

▶ This can be used to control the selective scale

▶ Gay-Balmaz F, Holm D D. Selective decay by Casimir dissipation in inviscid fluids[J]. Nonlinearity, 2013,
26(2): 495.

▶ Application to magnetic equilibrium δ(H + C) = 0: Gay-Balmaz, François, and Darryl D. Holm. ”A
geometric theory of selective decay with applications in MHD.” Nonlinearity 27.8 (2014): 1747.

Mingdong He (Oxford) 28 / 34



Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:

df(w)

dt
=

〈
w,

[
δf

δw
,
δH

δw

]〉
︸ ︷︷ ︸

{f,H}

−θ
〈[

δf

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉

We immediately have

d

dt
H(w) = 0,

dC(w)

dt
= −θ

〈[
δC

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉
= −θ

∥∥∥∥[δCδw , δHδw
]∥∥∥∥2

L

▶ L = (1− α2∆)s to define Sobolev Hs inner product.

▶ L = (1 + α2|k|2)s: high wavenumber dissipates faster (small scale)

▶ This can be used to control the selective scale

▶ Gay-Balmaz F, Holm D D. Selective decay by Casimir dissipation in inviscid fluids[J]. Nonlinearity, 2013,
26(2): 495.

▶ Application to magnetic equilibrium δ(H + C) = 0: Gay-Balmaz, François, and Darryl D. Holm. ”A
geometric theory of selective decay with applications in MHD.” Nonlinearity 27.8 (2014): 1747.

Mingdong He (Oxford) 28 / 34



Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:

df(w)

dt
=

〈
w,

[
δf

δw
,
δH

δw

]〉
︸ ︷︷ ︸

{f,H}

−θ
〈[

δf

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉

We immediately have

d

dt
H(w) = 0,

dC(w)

dt
= −θ

〈[
δC

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉
= −θ

∥∥∥∥[δCδw , δHδw
]∥∥∥∥2

L

▶ L = (1− α2∆)s to define Sobolev Hs inner product.

▶ L = (1 + α2|k|2)s: high wavenumber dissipates faster (small scale)

▶ This can be used to control the selective scale

▶ Gay-Balmaz F, Holm D D. Selective decay by Casimir dissipation in inviscid fluids[J]. Nonlinearity, 2013,
26(2): 495.

▶ Application to magnetic equilibrium δ(H + C) = 0: Gay-Balmaz, François, and Darryl D. Holm. ”A
geometric theory of selective decay with applications in MHD.” Nonlinearity 27.8 (2014): 1747.

Mingdong He (Oxford) 28 / 34



Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:

df(w)

dt
=

〈
w,

[
δf

δw
,
δH

δw

]〉
︸ ︷︷ ︸

{f,H}

−θ
〈[

δf

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉

We immediately have

d

dt
H(w) = 0,

dC(w)

dt
= −θ

〈[
δC

δw
,
δH

δw

]
, L

[
δC

δw
,
δH

δw

]〉
= −θ

∥∥∥∥[δCδw , δHδw
]∥∥∥∥2

L

▶ L = (1− α2∆)s to define Sobolev Hs inner product.

▶ L = (1 + α2|k|2)s: high wavenumber dissipates faster (small scale)

▶ This can be used to control the selective scale

▶ Gay-Balmaz F, Holm D D. Selective decay by Casimir dissipation in inviscid fluids[J]. Nonlinearity, 2013,
26(2): 495.

▶ Application to magnetic equilibrium δ(H + C) = 0: Gay-Balmaz, François, and Darryl D. Holm. ”A
geometric theory of selective decay with applications in MHD.” Nonlinearity 27.8 (2014): 1747.

Mingdong He (Oxford) 28 / 34



Another application: selective decay for turbulence

GENERIC system (General equation for the non-equilibrium reversible–irreversible coupling) by Hans C. Öttinger (1997).

dx

dt
= L

δE

δx
+M

δS

δx
.

▶ L: antisymmetric Poisson operator; generates reversible dynamics;

▶ M : symmetric positive semidefinite metric operator; generates irreversible dynamics

▶ L δE
δx

: conservative, time-reversal symmetric dynamics.

▶ M δS
δx

: dissipative relaxation toward equilibrium.
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dx

dt
= L

δE

δx
+M

δS

δx
.

Compatibility conditions

L
δS

δx
= 0, M

δE

δx
= 0.

▶ L: antisymmetric Poisson operator; generates reversible dynamics;

▶ M : symmetric positive semidefinite metric operator; generates irreversible dynamics

Energy:
dE

dt
=

〈 δE

δx
, L

δE

δx

〉
+

〈 δE

δx
,M

δS

δx

〉
= 0

(antisymmetry of L and degeneracy M δE/δx = 0)

Entropy:
dS

dt
=

〈 δS

δx
, L

δE

δx

〉
+

〈 δS

δx
,M

δS

δx

〉
≥ 0

(degeneracy L δS/δx = 0 and positivity of M)

▶ L δE
δx

: conservative, time-reversal symmetric dynamics.

▶ M δS
δx

: dissipative relaxation toward equilibrium.
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Numerical methods

Let’s go back to the magneto-frictional equations, where we have two structures

∂tA = f,
d

dt
E ≤ 0, H = H0

▶ Viewing this from finite element in time, the variation can be seen as associated test function.

▶ We introduce auxiliary variables j = ∇h ×B and H = QcB to project the variation into the same space
as A.

▶ He M, Farrell P E, Hu K, Andrews D. B. Helicity-preserving finite element discretization for magnetic
relaxation. SISC, 2025.
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Numerical methods

Introducing two scalars to modify the system:

∂tA+ λE
δE
δA

+ λH
δH
δA

= f.

d

dt
E = −F,

d

dt
H = 0.

▶ When we modify our system by variations, we need a compatibility condition.

▶ (∂tA, δE
δA

) = −F , and (∂tA, δH
δA

) = 0.

▶ Compatibility condition (
∥B∥2 (j, B)
(j, B) ∥j∥2

)(
λH

λE

)
=

(
0
0

)
.

▶ Thus, the determinant of the matrix is
∥B∥2∥j∥2 − (j,B)2 > 0,

if B ̸∥ j (i.e. j ×B ̸= 0), B ̸= 0 and j ̸= 0.

▶ Farrell E.P, M He., K Hu., G Zhang: Global and local helicity-preserving scheme for magnetic relaxation (2026, in
preparation).
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Numerical methods

Summary

▶ Hamiltonian system can be expressed as Poisson bracket.

▶ Two types of conservation: Energy (antisymmetry) and Casimir (degeneracy).

▶ Hamiltonian system can be modified for relaxation to equilibrium or selective decay in
turbulence modeling.

▶ Antisymmetric bracket + symmetric positive bracket (GENERIC)

▶ Symmetric positive bracket with Hamiltonian hidden in the kernel (Metriplectic dynamics)
→ magneto-frictional system.

▶ For equilibrium problem: we wish our PDE to be relaxed completely.

u∗variational ⊂ u∗dynamics

▶ Numerical methods: we can leverage the hidden structures to develop numerical schemes.
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