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Phase Space
. . . . e (_’*LU'?
» Consider a particle moving along a line &8
» The state is given by position and momentum:
(z,p). %
: : 5
» (z,p) forms a two-dimensional phase space A
Hamiltonian
P2
H =—4V
(z,p) = 5~ +V(2)
» Total energy of the system
Newton’s second law
p v (z)
T =— p=—
m dx
Hamilton’s Equations
de _OH  dp_ oM
dt  Op’ dt Oz
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Poisson Bracket (anti-symmetric)

_0f0g _0f0g
{f.9y = Ox dp OpOx

By computation

_ OpoH opdH  9H  dV(z) dp

= o “opor ~ or  dr di
deOH Ox0H p dx

J 2 A Ul Sl
{z, H} de Op Op Odx m dt
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Poisson Bracket (anti-symmetric)

By computation

gy OOH_OpOH __OH V(o) _dp
L op Opoxr  Oxr de  dt
deOH Ox0H p dx

= oy "o m &
We can rewrite the system
dx dp
E - {LL‘, }’ a {pv H}

What if | have a quantity Q(x(t),p(t))? How does it change w.r.t time?
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d _0Qde  0Qdp
_0QOH 0Q0oH

T Oz Op dp Oz
={Q, H}.
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For a general quantity Q(z(t), p(t))

d _0Qdr , 9Qdp
_9QoH 0Q0oH
T Oz Op dp Oz
={Q ,H}.

Therefore, we have

dQ _

Q is conserved <— {Q,H} = 0.
The phase space does not need to be parametrized by t, it can be any parameter

dQ _

where G is called a generator.
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Hamiiltonian and Poisson Bracket

We can choose the generator as G = p:

dﬁ_{ }_@@_@@_
ax - Wwhre oz dp Opodx
dp B
o = =0

Integrating

x(A) =z0 + A, p(A) = po.

P A= *0*7\
. =X
Q‘"J{\ ¢
—
%
© %

Space translation
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Hamiiltonian and Poisson Bracket

» G = H (Hamiltonian): H conservation <= time translation.
» G = p (momentum): p conservation <= space translation.

» G = L (angular momentum): L conservation <= rotation.
Noether's theorem

Conservation <= symmetry
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Hamiiltonian and Poisson Bracket

Poisson bracket
dF

E:{FﬂH}

» Beautiful!
» Energy: due to the antisymmetry of the Poisson bracket

d
—H={H,H} =0
dt { ’ }

» Casimir: due to the kernel of the Poisson bracket.

d
ZC={C.H}=0, VH.
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2D incompressible Euler (vorticity form)
orw + u - Vw = 0, V-u=0.
Introducing scalar stream function
u=Vr = (040, —01), w=Vx=0(—0y)— 9y(0ut)) = —A¢.
Rewrite the advection term
u-Vw = (0y9)0pw — (029)Oyw = —[w, ]
where the Jacobian bracket is defined as
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Hamiiltonian and Poisson Bracket

2D incompressible Euler (vorticity form)
orw + u - Vw = 0, V-u=0.
Introducing scalar stream function
u=Vr = (040, —01), w=Vx=0(—0y)— 9y(0ut)) = —A¢.
Rewrite the advection term
u-Vw = (0y9)0pw — (029)Oyw = —[w, ]
where the Jacobian bracket is defined as
[f, 9] = Ou, fOr,9 — 0z, 90s, f
The 2D Euler equation can be written as

atw = [wa UI]
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» Bracket for functional: Lie-Poisson bracket

b ) = 47, 1Y) = <w {% %D

» We choose the Hamiltonian

_1 29, = L 24, L
H—2/Q|u| dw—2/9|V1/)| d:c—2/Qz/)wd:c

» Compute the variation —6H = ).
ow
» LHS:

» RHS:
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>

Bracket for functional: Lie-Poisson bracket

2w = 1.myw) = ([ 32, 52

dw’ dw

_1 29, = L 24, L
—2/Q|u| dw—2/9|V1/)| d:c—2/91/)wd:c

H
Compute the variation oH = ).

ow
LHS:

We choose the Hamiltonian

RHS:

Equate them:

Ow = [¢> w]
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Hamiiltonian and Poisson Bracket

» Bracket for functional: Lie-Poisson bracket

2w = 1.myw) = ([ 32, 52

dw’ dw

_1 29, = L 24, L
—2/Q|u| dw—2/9|V1/)| d:c—2/91/)wd:c

» Compute the variation —6H = ).
ow
» LHS:

» We choose the Hamiltonian

» RHS:

» Equate them:

Ow = [¢> w]

\We then recover the 2D Euler equation!
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Energy (antisymmetry of the Poisson bracket)

The kinetic energy can be written in terms of ¢ and w:

1

1 2 1 L2
E=—- de == |V de = = wdx.
2/Q|u| 29' vl 2/Q1/J

Mingdong He (Oxford) 10/34



Hamiiltonian and Poisson Bracket

Energy (antisymmetry of the Poisson bracket)

The kinetic energy can be written in terms of ¢ and w:

E:1/|u|2dac:1 |VLw|2dm:1/wwdx.
2 Q 2Q Q

2
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Time evolution:
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Hamiiltonian and Poisson Bracket

Energy (antisymmetry of the Poisson bracket)

The kinetic energy can be written in terms of ¢ and w:

1 2 1 oL, 2 1
== =2 |V == da.
E 2/Q|u| dx 29| Y| dx 2/wa 7

Time evolution:

dE 1
Ezi/nwat“’dfc
1
= —— s d
5 ] vlovlds
1
=_= d
5 [ wolwde
= 0.

> We used (a, [b,c]) = (b, e, al) = (¢, [a, )
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Hamiiltonian and Poisson Bracket

Energy (antisymmetry of the Poisson bracket)

The kinetic energy can be written in terms of ¢ and w:

E:3/|u|2dac:1 |VLw|2dm:1/wwdx.
2 Q 2Q Q

2
dE 1

=5 | vl

Time evolution:

1
=5 [ ulwds
=0.

> We used (a, [b,¢]) = {b.[c,a]) = {¢.[a, )

» This is a dynamical invariant, tied to the Hamiltonian structure.
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Consider a general functional of vorticity:

Ca[w] =/Q<I>(w) dzx.
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Casimir (degeneracy of the Poisson bracket)

Consider a general functional of vorticity:

Time evolution:

fer- e 2]
— (G . #w)])
=0, VH.

since
<a7 [b7 C]> = <b7 [Cv a’]) = <Cv [a’7 b]>
[w, &' (w)] = weP" (w)wy — w,®" (w)w, = 0.
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Consider a general functional of vorticity:
Calw] = / D(w) dz.
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Time evolution:
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Hamiiltonian and Poisson Bracket

Casimir (degeneracy of the Poisson bracket)

Consider a general functional of vorticity:
Calw] = / D(w) dz.
Q

Time evolution:

since
<a7 [b7 C]> = <b7 [Cv a’]) = <Cv [a’7 b]>
[w, &' (w)] = weP" (w)wy — w,®" (w)w, = 0.

» These are Casimir invariants, independent of the Hamiltonian.

» Example: ®(s) = 5s” gives the enstrophy (®(s) = s”,p = 3,4...)
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Mathematical challenges: computation of equilibria

Equilibria of Euler equation

u X w = Vh, w=V Xu, V-u=0.
Equilibria of ideal MHD equation

ixB=Vp, j=VxB,  V-B=0.

Why do we care about these problems?
» Long term behaviour of solution of the time-dependent problem.
» Structures of the steady state leads to direct industrial application: fusion devices.
» Key challenges: ill-posedness (nonuniqueness), espectially for 3D problem.
» Solutions:

» We add some physical constraints (variational principle).
» We use artificial relaxation (B — B*) as t — occ.

A great idea: can we modify the Hamiltonian system to an artificial dynamical system

that relaxes to an equilibrium of the considered physical system?
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» Bressan, C., Kraus, M., Maj, O., & Morrison, P. J. (2025). Metriplectic relaxation to
equilibria. arXiv preprint arXiv:2506.09787.

Mingdong He (Oxford) 14 /34



Mathematical challenges: computation of equilibria

» Bressan, C., Kraus, M., Maj, O., & Morrison, P. J. (2025). Metriplectic relaxation to
equilibria. arXiv preprint arXiv:2506.09787.

» Bressan, C., Kraus, M., Morrison, P. J., & Maj, O. (2018, November). Relaxation to
magnetohydrodynamics equilibria via collision brackets. In Journal of Physics: Conference
Series (Vol. 1125, No. 1, p. 012002). IOP Publishing.

Mingdong He (Oxford) 14 /34



Mathematical challenges: computation of equilibria

» Bressan, C., Kraus, M., Maj, O., & Morrison, P. J. (2025). Metriplectic relaxation to
equilibria. arXiv preprint arXiv:2506.09787.

» Bressan, C., Kraus, M., Morrison, P. J., & Maj, O. (2018, November). Relaxation to
magnetohydrodynamics equilibria via collision brackets. In Journal of Physics: Conference
Series (Vol. 1125, No. 1, p. 012002). IOP Publishing.

Metriplectic dynamics (artificial relaxation): .,

» dissipating entropy S(u).
» conserving the Hamiltonian H (u).

Mingdong He (Oxford) 14 /34



Mathematical challenges: computation of equilibria

» Bressan, C., Kraus, M., Maj, O., & Morrison, P. J. (2025). Metriplectic relaxation to
equilibria. arXiv preprint arXiv:2506.09787.

» Bressan, C., Kraus, M., Morrison, P. J., & Maj, O. (2018, November). Relaxation to
magnetohydrodynamics equilibria via collision brackets. In Journal of Physics: Conference
Series (Vol. 1125, No. 1, p. 012002). IOP Publishing.

Metriplectic dynamics (artificial relaxation): .,

» dissipating entropy S(u).
» conserving the Hamiltonian H (u).

Variational principle (physical constraint): wu,

min{S(u) :uw €V, H(u)= H(uo)}
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Mingdong He (Oxford) 15/34



Steady state via variational principle

Minimization

08 0H

min{S(u) :u €V, H(u)=H(u)} = E(Ue) = )\E(“e)
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0T [u] = 6(S(u) — AH(u)) = 0.
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Steady state via variational principle

Minimization

min{S(u):ueV, Hu)=Hu)} = |2 (u) =222

This is due to the constrained minimization with a functional J[u] = S(u) — AM(H (u) — Ho)
0T [u] = 6(S(u) — AH(u)) = 0.

Applications:
» 2D steady Euler:
1

J[¢]:§

/ VY| — MpPde = A = —\ip.
Q
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This is due to the constrained minimization with a functional J[u] = S(u) — AM(H (u) — Ho)
0T [u] = 6(S(u) — AH(u)) = 0.

Applications:
» 2D steady Euler:
1
W)= 5 [ 196 = 3de — Av =0,
Q

» 2D Grad-Shafranov:
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Minimization

min{S(u):ueV, Hu)=Hu)} = |2 (u) =222

This is due to the constrained minimization with a functional J[u] = S(u) — AM(H (u) — Ho)
0T [u] = 6(S(u) — AH(u)) = 0.

Applications:
» 2D steady Euler:
1
W)= 5 [ 196 = 3de — Av =0,
Q

» 2D Grad-Shafranov:

1 [ v*(R,2) dRdz dRdz
3 JoCReyD R ORI,

T = — —A") = A\(CR>+ D).

» 3D Force-free field: .
J[u]:§/ IBP? —AB-Ade —> V x B = AB.
Q
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Metriplectic dynamics: artificial relaxation

A modified Hamiltonian system

d

 F(w) = {F(u), Hw)} + (F(u), S(u))
» {-,-}: Poisson bracket (anti-symmetric).

> (-,-): metric bracket (symmetric, negative semi-definite).

I
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A modified Hamiltonian system

d

 F(w) = {F(u), Hw)} + (F(u), S(u))
» {-,-}: Poisson bracket (anti-symmetric).

> (-,-): metric bracket (symmetric, negative semi-definite).

The Hamiltonian and entropy functionals must satisfy the conditions
{F(u), S} =0, (F(u),H(u)=0, VF
These compatibility conditions imply

d d
aH(u) =0, aS(u) =(S,9)(u) <0.

» The entropy is dissipated at constant Hamiltonian.

» If S is bounded below, the system will evolve on the manifold H(u) = H(uo), toward a state that satisfies
(S5,8)=0, ie.
{5, H}(ue) + (F, S)(ue) = 0.
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Metriplectic dynamics: artificial relaxation

We can define the bracket

{Am=4%vmw%mww,
dA B

A,B) = | L @)Kw)Z (2)d
(4.B) =~ [ SE@K g (@)du(a)
» J(u): antisymmetric operator

» K (u): symmetric operator, positive & semi-definite.

Mingdong He (Oxford) 19/34



Metriplectic dynamics: artificial relaxation

We can define the bracket

{4,B} = / O )70 (@)u(a)
dA B

(4,B) = - (@)K (u) 5 (2)du()

o ou
» J(u): antisymmetric operator

» K (u): symmetric operator, positive & semi-definite.

We have
d oF
aF(u) = <E»Ut>7
(R HY W) = (0, ()50,
(F,$)(w) = (00 K(u) 3).

Mingdong He (Oxford) 19/34



Metriplectic dynamics: artificial relaxation

We can define the bracket

{Am=4%vmw%mww,
dA B

(4,B) = - (@)K (u) 5 (2)du()

o ou
» J(u): antisymmetric operator

» K (u): symmetric operator, positive & semi-definite.

We have
d oF
T = (5 w),
oF 0H
{Fa H}(u) - <E7J(U)E>7
oF oS
(F,8)(w) = (5 Kw5).
Strong form of the dynamics
d d o0H oS
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Metriplectic dynamics: artificial relaxation

If ue is the steady state of the variational principle, then it is also the steady state of the metriplectic dynamics.
The converse is not true.
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Metriplectic dynamics: artificial relaxation

If ue is the steady state of the variational principle, then it is also the steady state of the metriplectic dynamics.
The converse is not true.

Proof: since u. statisfies 55 = )\ , then
d 0H 6S
= ()5~ K@)3 |,
oH
= (W)~ AK (@)
= (:)7
due to the compatibility condition
6S
{F,S} =0 = J(u )6u_0’
5H
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Metriplectic dynamics: artificial relaxation

Therefore,

* *
Uyariational - udynamics

Completely relaxed state

If the solution of the metriplectic dynamics satisfies
lim u(t) = u\iariational? H(u* ) = Hp.

v variational

We say the system is completely relaxed.

Mingdong He (Oxford) 21/34



Metriplectic dynamics: artificial relaxation

Therefore,

* *
Uyariational - udynamics

Completely relaxed state

If the solution of the metriplectic dynamics satisfies

. _ * * —
tllglo U(t) = Uyariational H(uvariational) - HO'

We say the system is completely relaxed.

» Unfortunately, complete relaxation does not always happen.

Mingdong He (Oxford) 21/34



Metriplectic dynamics: artificial relaxation

Therefore,

* *
Uyariational - udynamics

Completely relaxed state

If the solution of the metriplectic dynamics satisfies

. _ * * —
tllglo U(t) = Uyariational H(uvariational) - HO'

We say the system is completely relaxed.

» Unfortunately, complete relaxation does not always happen.
» It depends on the null space of the metric brackets.
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How to construct the metric bracket?

Section 6

How to construct the metric bracket?
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How to construct the metric bracket?

» Collision-like brackets: computationally expensive due to nonlocality.
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How to construct the metric bracket?

» Collision-like brackets: computationally expensive due to nonlocality.

» Diffusion-like brackets: computationally friendly.

Diffusion-like bracket

The diffusion bracket is defined as

(F,G) = —/QLi (‘;5) DL (‘;%) du()

where
» L;: V — V' is some linear operator.
> H=H(u)and & c V.
» D = D;;(x) s.t. it is

» symmetric, positive semi-definite
» giDi; =0 where g; = L; (%).

» u: a positive measure on ).
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How to construct the metric bracket?

Properties of diffusion-like bracket

» (F,G)=(G,F).
» (H,G) =0 where H is the Hamiltonian.
» (F,F)<0.
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ZF=(F9), VF=F().
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Properties of diffusion-like bracket

» (F,G)=(G,F).
» (H,G) =0 where H is the Hamiltonian.
» (F,F)<0.

Evolution equation

d
ZF=(F9), VF=F().

This implies dissipative entropy at constant Hamiltonian

d d
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How to construct the metric bracket?

Properties of diffusion-like bracket

» (F,G)=(G,F).
» (H,G) =0 where H is the Hamiltonian.
» (F,F)<0.

Evolution equation

%F —(F,S), VF=F().

This implies dissipative entropy at constant Hamiltonian

d d
—H=0 —S<0.
dt ’ dt~ —

Two diffusion-like brackets: div-grad bracket and curl-curl-like bracket.
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curl-curl bracket L = V x

oF 08 oF 05
(F,S)_—/Q(ng> D(Vx%>d:c— Qéuv [ (VXE>]dw
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curl-curl bracket L = V x

(F,S):—/ (VXJ—F>-D(V><§>CZ:¢:— 5—FV><[D(V><§>]dx
Q U ou qQ ou ou

> D=|g]* T -g®g=|g (I — %’;ﬁ’) is the orthogonal projection.
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> D=|g]* T -g®g=|g (I — %’;ﬁ’) is the orthogonal projection.
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curl-curl bracket L = V x

(F,S):—/ (de—F>-D(V><§>d:c:— 5—FV><[D(V><§>]dx
Q U ou qQ ou ou

> D=|g]* T -g®g=|g (I — %’;ﬁ’) is the orthogonal projection.
» g=VxA=B
> S= %fQB-Bd;vand H:%fQA-de.

0B
E——VX[DVXB]

By using the identity
Dh=|g|*h— (9@ g)h = |g]°h — (g-h)g = —g x (g x h)
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curl-curl bracket L = V x

(F,S):—/ (de—F>-D(V><§>d:c:— 5—FV><[D(V><§>]dx
Q U ou qQ ou ou

> D=|g]* T -g®g=|g (I — %’;ﬁ’) is the orthogonal projection.
» g=VxA=B
> S= %fQB-Bd;vand H:%fQA-de.

0B
E——VX[DVXB]

By using the identity
Dh = |g|*h — (9@ g)h = |g|*h = (9-h)g = —g x (g x h)
We end up with

%:VX(BX(BX(VXB)))
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How to construct the metric bracket?

0B
E—VX(UXB)—O,
u=(V x B) x B.

» Magneto-frictional equation.

Mingdong He (Oxford) 26/34



How to construct the metric bracket?

8—B—V><(u><B)=0,

ot
u=(V x B) x B.

» Magneto-frictional equation.

» Dissipative entropy (magnetic energy): & [ B- Bdx = —||(V x B) x BJ|%.
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How to construct the metric bracket?

0B
E—VX(UXB):O,
=(V x B) x B.
» Magneto-frictional equation.
» Dissipative entropy (magnetic energy): 3 fB Bdx = —||(V x B) x BJJ.

» Conserved Hamiltonian (magnetic helicity): fA Bdx = 0.
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Another application: selective decay for turbulence

Selective decay (non-ideal)

In 3D fluid or MHD, energy and helicity decay at different rates.
One quantity is dissipative while another one is approximately constant.

>
>
» Statistical mechanics predictions: large-scale behaviour should be presented instead of random small scale behaviour.
>

Numerical experiments: small-scale behaviour.
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Another application: selective decay for turbulence

Selective decay (non-ideal)

» In 3D fluid or MHD, energy and helicity decay at different rates.

» One quantity is dissipative while another one is approximately constant.

» Statistical mechanics predictions: large-scale behaviour should be presented instead of random small scale behaviour.
>

Numerical experiments: small-scale behaviour.

Question

We know that Lie-Poisson bracket yield two types of conservation, can we modify to impose such selective decay?
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Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:

dtw) _ /88 SHT\ /[0 oH] |, [oC oH
dt _<w’[5w’6w]> 9<{6w76w]’L{6w’6w}>
—_——

{r.H}
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Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:
i ), [9C om]

df(w) _ Sf SHIN _,
a \Y|sw sw Sw’ dw Sw’ dw
{f,H}
We immediately have
d
dC(w) _ _, [[9C oH] [oC sH]\ _ _ NIfoC sH]|?
. ow’ dw |’ | dw’ dw - dw’ dw ||,
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Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:

dw) _ [, T8 SHT\ /Tof an] | [oC an
a \Y|sw sw Sw’ dw |’ | dw’ dw
{f,H}
We immediately have
d
d0w) __,/[3C 8H] | [0C sHT\ __[IToC oH] |
dt ow’ dw |’ | dw’ dw o dw’ dw ||,

> L = (1 —a?A)* to define Sobolev H* inner product.
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Again, consider Hamiltonian H and Casimir C:
dw) _ [, [88 SH\ _, /[of 81 | [oC oH
ow’ dw ow’ dw

dt Sw’ dw

{r.H}

We immediately have

—H(w) =0,
dC(w) _ _, [[9C oH] [oC sH]\ _ _ NIfoC sH]|?
dt ow’ dw |’ | dw’ dw o dw’ dw

L

> L = (1 —a?A)* to define Sobolev H* inner product.
» L = (1+ c?|k|?)®: high wavenumber dissipates faster (small scale)

Mingdong He (Oxford) 28/34



Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:
dw) _ [, [88 SH\ _, /[of 81 | [oC oH
ow’ dw ow’ dw

dt Sw’ dw

{r.H}

We immediately have

—H(w) =0,
dC(w) _ _, [[9C oH] [oC sH]\ _ _ NIfoC sH]|?
dt ow’ dw |’ | dw’ dw o dw’ dw

L

> L = (1 —a?A)* to define Sobolev H* inner product.
» L = (1+ c?|k|?)®: high wavenumber dissipates faster (small scale)

» This can be used to control the selective scale

Mingdong He (Oxford) 28/34



Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:

dtw) _ /88 SHT\ /[0 oH] |, [oC oH
dt —<w, [5w’6w]> 0<{6w76w]’[1{6w’6w}>
—_——

{f.H}
We immediately have
d
dC(w) __, /[5C 8H) | [5C sH|\ _ _,[If6C o] |?
dt ow’ dw |’ | dw’ dw o dw’ dw ||,

L = (1 —a*A)* to define Sobolev H* inner product.
L = (14 &?|k|?)®: high wavenumber dissipates faster (small scale)
This can be used to control the selective scale

Gay-Balmaz F, Holm D D. Selective decay by Casimir dissipation in inviscid fluids[J]. Nonlinearity, 2013,
26(2): 495.
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Another application: selective decay for turbulence

Again, consider Hamiltonian H and Casimir C:

We immediately have

v vyVvyy

dfw) _/ [af SHI\ , /[6f GH]|  [6C oH
dt _<w’[5w’6w]> 0<{6w’6w]’[1{6w’6w}>
—_——

{f,H}
d
dCw) __, TC 8] L TC sH|\ __[I1oC o]
dt ow’ dw |’ | dw’ dw o dw’ dw ||,

L = (1 —a*A)* to define Sobolev H* inner product.
L = (14 &?|k|?)®: high wavenumber dissipates faster (small scale)
This can be used to control the selective scale

Gay-Balmaz F, Holm D D. Selective decay by Casimir dissipation in inviscid fluids[J]. Nonlinearity, 2013,

Application to magnetic equilibrium §(H + C') = 0: Gay-Balmaz, Francois, and Darryl D. Holm. "A
geometric theory of selective decay with applications in MHD.” Nonlinearity 27.8 (2014): 1747.
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Another application: selective decay for turbulence

GENERIC system (General equation for the non-equilibrium reversible—irreversible coupling) by Hans C. (3ttinger (1997).

dx oF éS
— =L—+M—.
dt oz + ox
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Another application: selective decay for turbulence

GENERIC system (General equation for the non-equilibrium reversible—irreversible coupling) by Hans C. 6ttinger (1997).
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dt — ox o
Compeatibility conditions
éS oE
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» L: antisymmetric Poisson operator; generates reversible dynamics;
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Another application: selective decay for turbulence

GENERIC system (General equation for the non-equilibrium reversible—irreversible coupling) by Hans C. 6ttinger (1997).

dx OF 6S

— =L—+4+M—.
dt ox + ox
Compeatibility conditions
éS oE
L— =0, M—=0
oz ox

» L: antisymmetric Poisson operator; generates reversible dynamics;

» M: symmetric positive semidefinite metric operator; generates irreversible dynamics
dE 0E _6E oF S
Energy: —:<—,L—> < M >:0
&y dt ox Oz

sz’ Sz
(antisymmetry of L and degeneracy M 6E /§x = 0)
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GENERIC system (General equation for the non-equilibrium reversible—irreversible coupling) by Hans C. 6ttinger (1997).

dx OF 6S

— =L—+4+M—.
dt ox + ox
Compeatibility conditions
éS oE
L— =0, M—=0
oz ox

» L: antisymmetric Poisson operator; generates reversible dynamics;
» M: symmetric positive semidefinite metric operator; generates irreversible dynamics
dE 0E _6E oF S

= (G baa )+ (G M) =0

E : — =(—,L—
nerey dt or oz

sz’ Sz
(antisymmetry of L and degeneracy M 6E /§x = 0)
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(degeneracy L 6S/éx = 0 and positivity of M)
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Another application: selective decay for turbulence

GENERIC system (General equation for the non-equilibrium reversible—irreversible coupling) by Hans C. 6ttinger (1997).

dx OF 6S

— =L—+4+M—.
dt ox + ox
Compeatibility conditions
éS oE
L— =0, M—=0
oz ox

» L: antisymmetric Poisson operator; generates reversible dynamics;
» M: symmetric positive semidefinite metric operator; generates irreversible dynamics
dE 0E _6E oF S

= (G baa )+ (G M) =0

E : — =(—,L—
nerey dt or oz

sz’ Sz
(antisymmetry of L and degeneracy M 6E /§x = 0)

ds 6S _OF S S
Entropy: — = —,L—>+<—,M—>>O
dt or oz ox ox
(degeneracy L 6S/éx = 0 and positivity of M)
> L‘;—Ij: conservative, time-reversal symmetric dynamics.

> M%: dissipative relaxation toward equilibrium.
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Numerical methods

Let's go back to the magneto-frictional equations, where we have two structures

OA=f, %Sg(), H ="Ho
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Numerical methods

Let's go back to the magneto-frictional equations, where we have two structures

OA=f, %Sg(), H ="Ho

N
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Numerical methods

Let's go back to the magneto-frictional equations, where we have two structures

OA=f, %Sg(), H ="Ho

EMt(A) —

" | 2 T e N
2/ a2 Wy 72/t @A L ar

n

2/ (O A[V x B)) dt :2/%“(&,4,)(#
tn
2 [ [T B
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Numerical methods

Let's go back to the magneto-frictional equations, where we have two structures

atA:fv

EMTL(A) — E™(A)

tn41 5
2 /t (0uA | 35 )t

n

2 [0 [T B a
t

n

2 [ [T B
t

n

» Viewing this from finite element in time, the variation can be seen as associated test function.

d
— &< =
dtg <0, H="Ho

il " tp41
HOH =2 / (B, A,
t

n

oH

A

) dt

—9 / " oA[B)) at
t

n
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Numerical methods

Let's go back to the magneto-frictional equations, where we have two structures

f;

Ot A =

tn41 5

n+1 _con —_ e
€71 (A) — E7(A) 2/tn oA 35

) dt

n

n

» Viewing this from finite element in time, the variation can be seen as associated test function.

2 [0 [T B a

t

2 [ [T
t

d
— &< =
dtg <0, H="Ho

41 tn41
HOH =2 / (B, A,
t

n

oH

A

) dt

—9 / " oA[B)) at
t

n

» We introduce auxiliary variables j = Vi x B and H = Q°B to project the variation into the same space

as A.
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Numerical methods

Let's go back to the magneto-frictional equations, where we have two structures

OA=f, %Sg(), H="Ho

tn41 5 tp41 OH
nt1l _en _ 9¢ ntl _gm _ -
£ (A) — £7(A) 2/tn @A 2 har g Q/tn @A L ar
tn41 tp41
—2 [ " @A[TxB] —2 [ T @aB)a
tn tn

2 [ [T B
t

n

» Viewing this from finite element in time, the variation can be seen as associated test function.

» We introduce auxiliary variables j = Vi x B and H = Q°B to project the variation into the same space
as A.

» He M, Farrell P E, Hu K, Andrews D. B. Helicity-preserving finite element discretization for magnetic
relaxation. SISC, 2025.
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Numerical methods

Introducing two scalars to modify the system:

5E oH
A+ gl oS 4 ay =1
A+ e S | A s TS
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Introducing two scalars to modify the system:

o0&
OtA + \g| —
t A+ E(SA

+ g

OH
a7t
de_ _p
dt

d

—H = 0.
dtH

» When we modify our system by variations, we need a compatibility condition.
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Numerical methods

Introducing two scalars to modify the system:

5E oH

A+ gl oS 4 ay =1

A+ e S | A s TS
de_ g
di
d
ZHx—o.
@t

» When we modify our system by variations, we need a compatibility condition.

> (A, )= —F, and (04, 3%) =0.
(5 Bi2) () = )
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» Compatibility condition
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Numerical methods

Introducing two scalars to modify the system:

5E oH
A+ gl oS 4 ay =1
A+ e S | A s TS
de_ g
di
d
ZHx—o.
@t

v

When we modify our system by variations, we need a compatibility condition.

(0:A,25) = —F, and (8:A, 2%) = 0.
(5 Bi2) () = )

»5A P 5A
Compatibility condition

IBII*11411* = (4, B)* >0,
if B|fj (i.,e.  x B#0), B#0andj#0.

vy

» Thus, the determinant of the matrix is
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Numerical methods

Introducing two scalars to modify the system:

5E oH

A+ gl oS 4 ay =1

A+ e S | A s TS
de_ g
di
d
ZHx—o.
@t

» When we modify our system by variations, we need a compatibility condition.

(0:A,25) = —F, and (8:A, 2%) = 0.
(5 Bi2) () = )

T O0A 7 5A
» Compatibility condition
IBI*I51* - (3, B)* >0,
if B|fj (i.,e.  x B#0), B#0andj#0.
» Farrell E.P, M He., K Hu., G Zhang: Global and local helicity-preserving scheme for magnetic relaxation (2026, in
preparation).

v

» Thus, the determinant of the matrix is
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Numerical methods

Summary
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Summary

» Hamiltonian system can be expressed as Poisson bracket.

» Two types of conservation: Energy (antisymmetry) and Casimir (degeneracy).

» Hamiltonian system can be modified for relaxation to equilibrium or selective decay in
turbulence modeling.

» Antisymmetric bracket + symmetric positive bracket (GENERIC)

» Symmetric positive bracket with Hamiltonian hidden in the kernel (Metriplectic dynamics)
— magneto-frictional system.

» For equilibrium problem: we wish our PDE to be relaxed completely.

u\tariational - uzynamics
» Numerical methods: we can leverage the hidden structures to develop numerical schemes.
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