

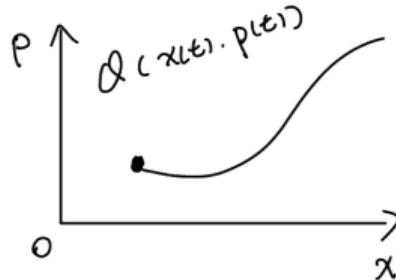
Hidden structures of dissipative equations leading to equilibria

Mingdong He¹

¹Mathematical Institute, University of Oxford

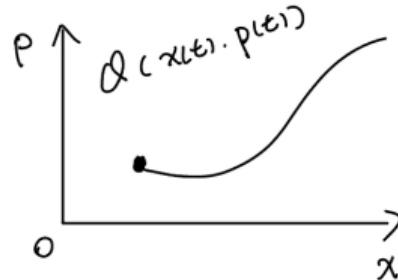
Phase Space

- ▶ Consider a particle moving along a line



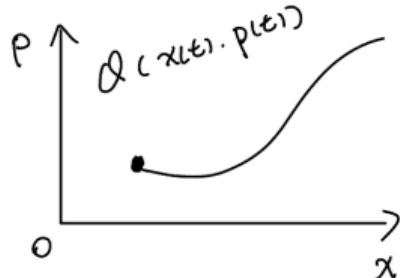
Phase Space

- ▶ Consider a particle moving along a line
- ▶ The state is given by position and momentum: (x, p) .



Phase Space

- ▶ Consider a particle moving along a line
- ▶ The state is given by position and momentum: (x, p) .
- ▶ (x, p) forms a two-dimensional phase space



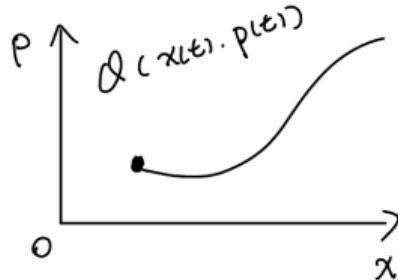
Phase Space

- ▶ Consider a particle moving along a line
- ▶ The state is given by position and momentum: (x, p) .
- ▶ (x, p) forms a two-dimensional phase space

Hamiltonian

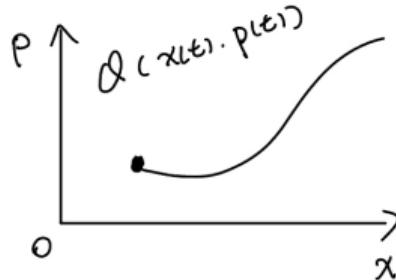
$$H(x, p) = \frac{p^2}{2m} + V(x)$$

- ▶ Total energy of the system



Phase Space

- ▶ Consider a particle moving along a line
- ▶ The state is given by position and momentum: (x, p) .
- ▶ (x, p) forms a two-dimensional phase space



Hamiltonian

$$H(x, p) = \frac{p^2}{2m} + V(x)$$

- ▶ Total energy of the system

Newton's second law

$$\dot{x} = \frac{p}{m} \quad \dot{p} = -\frac{dV(x)}{dx}$$

Phase Space

- ▶ Consider a particle moving along a line
- ▶ The state is given by position and momentum: (x, p) .
- ▶ (x, p) forms a two-dimensional phase space



Hamiltonian

$$H(x, p) = \frac{p^2}{2m} + V(x)$$

- ▶ Total energy of the system

Newton's second law

$$\dot{x} = \frac{p}{m} \quad \dot{p} = -\frac{dV(x)}{dx}$$

Hamilton's Equations

$$\frac{dx}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial x}$$

Poisson Bracket (anti-symmetric)

$$\{f, g\} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial p} - \frac{\partial f}{\partial p} \frac{\partial g}{\partial x}$$

Poisson Bracket (anti-symmetric)

$$\{f, g\} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial p} - \frac{\partial f}{\partial p} \frac{\partial g}{\partial x}$$

By computation

$$\{p, H\} = \frac{\partial p}{\partial x} \frac{\partial H}{\partial p} - \frac{\partial p}{\partial p} \frac{\partial H}{\partial x} = -\frac{\partial H}{\partial x} = -\frac{dV(x)}{dx} = \frac{dp}{dt}$$

$$\{x, H\} = \frac{dx}{dx} \frac{\partial H}{\partial p} - \frac{\partial x}{\partial p} \frac{\partial H}{\partial x} = \frac{p}{m} = \frac{dx}{dt}$$

Poisson Bracket (anti-symmetric)

$$\{f, g\} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial p} - \frac{\partial f}{\partial p} \frac{\partial g}{\partial x}$$

By computation

$$\{p, H\} = \frac{\partial p}{\partial x} \frac{\partial H}{\partial p} - \frac{\partial p}{\partial p} \frac{\partial H}{\partial x} = -\frac{\partial H}{\partial x} = -\frac{dV(x)}{dx} = \frac{dp}{dt}$$

$$\{x, H\} = \frac{dx}{dx} \frac{\partial H}{\partial p} - \frac{\partial x}{\partial p} \frac{\partial H}{\partial x} = \frac{p}{m} = \frac{dx}{dt}$$

We can rewrite the system

$$\frac{dx}{dt} = \{x, H\}, \quad \frac{dp}{dt} = \{p, H\}.$$

Poisson Bracket (anti-symmetric)

$$\{f, g\} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial p} - \frac{\partial f}{\partial p} \frac{\partial g}{\partial x}$$

By computation

$$\begin{aligned}\{p, H\} &= \frac{\partial p}{\partial x} \frac{\partial H}{\partial p} - \frac{\partial p}{\partial p} \frac{\partial H}{\partial x} = -\frac{\partial H}{\partial x} = -\frac{dV(x)}{dx} = \frac{dp}{dt} \\ \{x, H\} &= \frac{dx}{dx} \frac{\partial H}{\partial p} - \frac{\partial x}{\partial p} \frac{\partial H}{\partial x} = \frac{p}{m} = \frac{dx}{dt}\end{aligned}$$

We can rewrite the system

$$\frac{dx}{dt} = \{x, H\}, \quad \frac{dp}{dt} = \{p, H\}.$$

What if I have a quantity $Q(x(t), p(t))$? How does it change w.r.t time?

For a general quantity $Q(x(t), p(t))$

$$\begin{aligned}\frac{d}{dt}Q(x(t), p(t)) &= \frac{\partial Q}{\partial x} \frac{dx}{dt} + \frac{\partial Q}{\partial p} \frac{dp}{dt} \\ &= \frac{\partial Q}{\partial x} \frac{\partial H}{\partial p} - \frac{\partial Q}{\partial p} \frac{\partial H}{\partial x} \\ &= \{Q, H\}.\end{aligned}$$

For a general quantity $Q(x(t), p(t))$

$$\begin{aligned}\frac{d}{dt}Q(x(t), p(t)) &= \frac{\partial Q}{\partial x} \frac{dx}{dt} + \frac{\partial Q}{\partial p} \frac{dp}{dt} \\ &= \frac{\partial Q}{\partial x} \frac{\partial H}{\partial p} - \frac{\partial Q}{\partial p} \frac{\partial H}{\partial x} \\ &= \{Q, H\}.\end{aligned}$$

Therefore, we have

$$\frac{dQ}{dt} = \{Q, H\}.$$

For a general quantity $Q(x(t), p(t))$

$$\begin{aligned}\frac{d}{dt}Q(x(t), p(t)) &= \frac{\partial Q}{\partial x} \frac{dx}{dt} + \frac{\partial Q}{\partial p} \frac{dp}{dt} \\ &= \frac{\partial Q}{\partial x} \frac{\partial H}{\partial p} - \frac{\partial Q}{\partial p} \frac{\partial H}{\partial x} \\ &= \{Q, H\}.\end{aligned}$$

Therefore, we have

$$\frac{dQ}{dt} = \{Q, H\}.$$

Q is conserved $\iff \{Q, H\} = 0$.

For a general quantity $Q(x(t), p(t))$

$$\begin{aligned}\frac{d}{dt}Q(x(t), p(t)) &= \frac{\partial Q}{\partial x} \frac{dx}{dt} + \frac{\partial Q}{\partial p} \frac{dp}{dt} \\ &= \frac{\partial Q}{\partial x} \frac{\partial H}{\partial p} - \frac{\partial Q}{\partial p} \frac{\partial H}{\partial x} \\ &= \{Q, H\}.\end{aligned}$$

Therefore, we have

$$\frac{dQ}{dt} = \{Q, H\}.$$

$$Q \text{ is conserved} \iff \{Q, H\} = 0.$$

The phase space does not need to be parametrized by t , it can be any parameter

$$\frac{dQ}{d\lambda} = \{Q, G\}$$

where G is called a **generator**.

We can choose the generator as $G = p$:

$$\frac{dx}{d\lambda} = \{x, p\} = \frac{\partial x}{\partial x} \frac{\partial p}{\partial p} - \frac{\partial x}{\partial p} \frac{\partial p}{\partial x} = 1,$$

$$\frac{dp}{d\lambda} = \{p, p\} = 0.$$

We can choose the generator as $G = p$:

$$\frac{dx}{d\lambda} = \{x, p\} = \frac{\partial x}{\partial x} \frac{\partial p}{\partial p} - \frac{\partial x}{\partial p} \frac{\partial p}{\partial x} = 1,$$

$$\frac{dp}{d\lambda} = \{p, p\} = 0.$$

Integrating

$$x(\lambda) = x_0 + \lambda, \quad p(\lambda) = p_0.$$

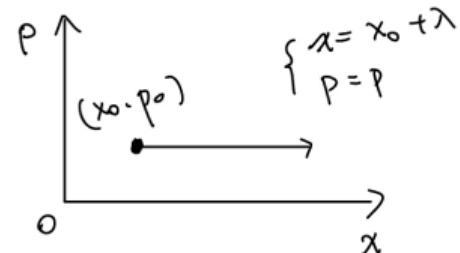
We can choose the generator as $G = p$:

$$\frac{dx}{d\lambda} = \{x, p\} = \frac{\partial x}{\partial x} \frac{\partial p}{\partial p} - \frac{\partial x}{\partial p} \frac{\partial p}{\partial x} = 1,$$

$$\frac{dp}{d\lambda} = \{p, p\} = 0.$$

Integrating

$$x(\lambda) = x_0 + \lambda, \quad p(\lambda) = p_0.$$



Space translation

- $G = H$ (Hamiltonian): H conservation \iff time translation.

- ▶ $G = H$ (Hamiltonian): H conservation \iff time translation.
- ▶ $G = p$ (momentum): p conservation \iff space translation.

- ▶ $G = H$ (Hamiltonian): H conservation \iff time translation.
- ▶ $G = p$ (momentum): p conservation \iff space translation.
- ▶ $G = L$ (angular momentum): L conservation \iff rotation.

- ▶ $G = H$ (Hamiltonian): H conservation \iff time translation.
- ▶ $G = p$ (momentum): p conservation \iff space translation.
- ▶ $G = L$ (angular momentum): L conservation \iff rotation.

Noether's theorem

Conservation \iff symmetry

Poisson bracket

$$\frac{dF}{dt} = \{F, H\}$$

Poisson bracket

$$\frac{dF}{dt} = \{F, H\}$$

- ▶ Beautiful!

Poisson bracket

$$\frac{dF}{dt} = \{F, H\}$$

- ▶ Beautiful!
- ▶ **Energy**: due to the antisymmetry of the Poisson bracket

$$\frac{d}{dt}H = \{H, H\} = 0$$

Poisson bracket

$$\frac{dF}{dt} = \{F, H\}$$

- ▶ Beautiful!
- ▶ **Energy**: due to the antisymmetry of the Poisson bracket

$$\frac{d}{dt}H = \{H, H\} = 0$$

- ▶ **Casimir**: due to the kernel of the Poisson bracket.

$$\frac{d}{dt}C = \{C, H\} = 0, \quad \forall H.$$

2D incompressible Euler (vorticity form)

$$\partial_t w + u \cdot \nabla w = 0, \quad \nabla \cdot u = 0.$$

2D incompressible Euler (vorticity form)

$$\partial_t w + u \cdot \nabla w = 0, \quad \nabla \cdot u = 0.$$

Introducing scalar stream function ψ

$$u = \nabla^\perp \psi = (\partial_y \psi, -\partial_x \psi), \quad w = \nabla \times \psi = \partial_x(-\partial_y \psi) - \partial_y(\partial_x \psi) = -\Delta \psi.$$

2D incompressible Euler (vorticity form)

$$\partial_t w + u \cdot \nabla w = 0, \quad \nabla \cdot u = 0.$$

Introducing scalar stream function ψ

$$u = \nabla^\perp \psi = (\partial_y \psi, -\partial_x \psi), \quad w = \nabla \times \psi = \partial_x(-\partial_y \psi) - \partial_y(\partial_x \psi) = -\Delta \psi.$$

Rewrite the advection term

$$u \cdot \nabla w = (\partial_y \psi) \partial_x w - (\partial_x \psi) \partial_y w = -[w, \psi]$$

where the Jacobian bracket is defined as

$$[f, g] = \partial_{x_1} f \partial_{x_2} g - \partial_{x_1} g \partial_{x_2} f.$$

2D incompressible Euler (vorticity form)

$$\partial_t w + u \cdot \nabla w = 0, \quad \nabla \cdot u = 0.$$

Introducing scalar stream function ψ

$$u = \nabla^\perp \psi = (\partial_y \psi, -\partial_x \psi), \quad w = \nabla \times \psi = \partial_x(-\partial_y \psi) - \partial_y(\partial_x \psi) = -\Delta \psi.$$

Rewrite the advection term

$$u \cdot \nabla w = (\partial_y \psi) \partial_x w - (\partial_x \psi) \partial_y w = -[w, \psi]$$

where the Jacobian bracket is defined as

$$[f, g] = \partial_{x_1} f \partial_{x_2} g - \partial_{x_1} g \partial_{x_2} f.$$

The 2D Euler equation can be written as

$$\partial_t w = [\psi, w]$$

- ▶ Bracket for functional: Lie-Poisson bracket

$$\frac{df}{dt}(w) = \{f, H\}(w) = \left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

- ▶ Bracket for functional: Lie-Poisson bracket

$$\frac{df}{dt}(w) = \{f, H\}(w) = \left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

- ▶ We choose the Hamiltonian

$$H = \frac{1}{2} \int_{\Omega} |u|^2 \, dx = \frac{1}{2} \int_{\Omega} |\nabla \psi|^2 \, dx = \frac{1}{2} \int_{\Omega} \psi w \, dx$$

- ▶ Bracket for functional: Lie-Poisson bracket

$$\frac{df}{dt}(w) = \{f, H\}(w) = \left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

- ▶ We choose the Hamiltonian

$$H = \frac{1}{2} \int_{\Omega} |u|^2 \, dx = \frac{1}{2} \int_{\Omega} |\nabla \psi|^2 \, dx = \frac{1}{2} \int_{\Omega} \psi w \, dx$$

- ▶ Compute the variation $\frac{\delta H}{\delta w} = \psi$.

- ▶ Bracket for functional: Lie-Poisson bracket

$$\frac{df}{dt}(w) = \{f, H\}(w) = \left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

- ▶ We choose the Hamiltonian

$$H = \frac{1}{2} \int_{\Omega} |u|^2 \, dx = \frac{1}{2} \int_{\Omega} |\nabla \psi|^2 \, dx = \frac{1}{2} \int_{\Omega} \psi \, w \, dx$$

- ▶ Compute the variation $\frac{\delta H}{\delta w} = \psi$.
- ▶ LHS:

$$\frac{df}{dt}(w) = \left\langle \frac{\delta f}{\delta w}, \partial_t w \right\rangle$$

- ▶ Bracket for functional: Lie-Poisson bracket

$$\frac{df}{dt}(w) = \{f, H\}(w) = \left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

- ▶ We choose the Hamiltonian

$$H = \frac{1}{2} \int_{\Omega} |u|^2 \, dx = \frac{1}{2} \int_{\Omega} |\nabla \psi|^2 \, dx = \frac{1}{2} \int_{\Omega} \psi w \, dx$$

- ▶ Compute the variation $\frac{\delta H}{\delta w} = \psi$.

- ▶ LHS:

$$\frac{df}{dt}(w) = \left\langle \frac{\delta f}{\delta w}, \partial_t w \right\rangle$$

- ▶ RHS:

$$\left\langle w, \left[\frac{\delta f}{\delta w}, \psi \right] \right\rangle = \left\langle \frac{\delta f}{\delta w}, [\psi, w] \right\rangle$$

- ▶ Bracket for functional: Lie-Poisson bracket

$$\frac{df}{dt}(w) = \{f, H\}(w) = \left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

- ▶ We choose the Hamiltonian

$$H = \frac{1}{2} \int_{\Omega} |u|^2 \, dx = \frac{1}{2} \int_{\Omega} |\nabla \psi|^2 \, dx = \frac{1}{2} \int_{\Omega} \psi w \, dx$$

- ▶ Compute the variation $\frac{\delta H}{\delta w} = \psi$.

- ▶ LHS:

$$\frac{df}{dt}(w) = \left\langle \frac{\delta f}{\delta w}, \partial_t w \right\rangle$$

- ▶ RHS:

$$\left\langle w, \left[\frac{\delta f}{\delta w}, \psi \right] \right\rangle = \left\langle \frac{\delta f}{\delta w}, [\psi, w] \right\rangle$$

- ▶ Equate them:

$$\partial_t w = [\psi, w]$$

- ▶ Bracket for functional: Lie-Poisson bracket

$$\frac{df}{dt}(w) = \{f, H\}(w) = \left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

- ▶ We choose the Hamiltonian

$$H = \frac{1}{2} \int_{\Omega} |u|^2 \, dx = \frac{1}{2} \int_{\Omega} |\nabla \psi|^2 \, dx = \frac{1}{2} \int_{\Omega} \psi w \, dx$$

- ▶ Compute the variation $\frac{\delta H}{\delta w} = \psi$.

- ▶ LHS:

$$\frac{df}{dt}(w) = \left\langle \frac{\delta f}{\delta w}, \partial_t w \right\rangle$$

- ▶ RHS:

$$\left\langle w, \left[\frac{\delta f}{\delta w}, \psi \right] \right\rangle = \left\langle \frac{\delta f}{\delta w}, [\psi, w] \right\rangle$$

- ▶ Equate them:

$$\partial_t w = [\psi, w]$$

- ▶ We then recover the 2D Euler equation!

Energy (antisymmetry of the Poisson bracket)

The kinetic energy can be written in terms of ψ and ω :

$$E = \frac{1}{2} \int_{\Omega} |u|^2 dx = \frac{1}{2} \int_{\Omega} |\nabla^{\perp} \psi|^2 dx = \frac{1}{2} \int_{\Omega} \psi \omega dx.$$

Energy (antisymmetry of the Poisson bracket)

The kinetic energy can be written in terms of ψ and ω :

$$E = \frac{1}{2} \int_{\Omega} |u|^2 dx = \frac{1}{2} \int_{\Omega} |\nabla^{\perp} \psi|^2 dx = \frac{1}{2} \int_{\Omega} \psi \omega dx.$$

Time evolution:

$$\begin{aligned} \frac{dE}{dt} &= \frac{1}{2} \int_{\Omega} \psi \partial_t \omega dx \\ &= -\frac{1}{2} \int_{\Omega} \psi [\omega, \psi] dx \\ &= -\frac{1}{2} \int_{\Omega} [\psi, \psi] \omega dx \\ &= 0. \end{aligned}$$

Energy (antisymmetry of the Poisson bracket)

The kinetic energy can be written in terms of ψ and ω :

$$E = \frac{1}{2} \int_{\Omega} |u|^2 dx = \frac{1}{2} \int_{\Omega} |\nabla^{\perp} \psi|^2 dx = \frac{1}{2} \int_{\Omega} \psi \omega dx.$$

Time evolution:

$$\begin{aligned} \frac{dE}{dt} &= \frac{1}{2} \int_{\Omega} \psi \partial_t \omega dx \\ &= -\frac{1}{2} \int_{\Omega} \psi [\omega, \psi] dx \\ &= -\frac{1}{2} \int_{\Omega} [\psi, \psi] \omega dx \\ &= 0. \end{aligned}$$

- We used $\langle a, [b, c] \rangle = \langle b, [c, a] \rangle = \langle c, [a, b] \rangle$

Energy (antisymmetry of the Poisson bracket)

The kinetic energy can be written in terms of ψ and ω :

$$E = \frac{1}{2} \int_{\Omega} |u|^2 dx = \frac{1}{2} \int_{\Omega} |\nabla^{\perp} \psi|^2 dx = \frac{1}{2} \int_{\Omega} \psi \omega dx.$$

Time evolution:

$$\begin{aligned} \frac{dE}{dt} &= \frac{1}{2} \int_{\Omega} \psi \partial_t \omega dx \\ &= -\frac{1}{2} \int_{\Omega} \psi [\omega, \psi] dx \\ &= -\frac{1}{2} \int_{\Omega} [\psi, \psi] \omega dx \\ &= 0. \end{aligned}$$

- ▶ We used $\langle a, [b, c] \rangle = \langle b, [c, a] \rangle = \langle c, [a, b] \rangle$
- ▶ This is a **dynamical invariant**, tied to the Hamiltonian structure.

Casimir (degeneracy of the Poisson bracket)

Consider a general functional of vorticity:

$$C_\Phi[\omega] = \int_{\Omega} \Phi(\omega) dx.$$

Casimir (degeneracy of the Poisson bracket)

Consider a general functional of vorticity:

$$C_\Phi[\omega] = \int_{\Omega} \Phi(\omega) dx.$$

Time evolution:

$$\begin{aligned} \frac{d}{dt} C_\Phi &= \left\langle w, \left[\Phi'(w), \frac{\delta H}{\delta u} \right] \right\rangle \\ &= \left\langle \frac{\delta H}{\delta w}, [w, \Phi'(w)] \right\rangle \\ &= 0, \quad \forall H. \end{aligned}$$

since

$$\langle a, [b, c] \rangle = \langle b, [c, a] \rangle = \langle c, [a, b] \rangle$$

$$[w, \Phi'(w)] = w_x \Phi''(w) w_y - w_y \Phi''(w) w_x = 0.$$

Casimir (degeneracy of the Poisson bracket)

Consider a general functional of vorticity:

$$C_\Phi[\omega] = \int_{\Omega} \Phi(\omega) dx.$$

Time evolution:

$$\begin{aligned} \frac{d}{dt} C_\Phi &= \left\langle w, \left[\Phi'(w), \frac{\delta H}{\delta u} \right] \right\rangle \\ &= \left\langle \frac{\delta H}{\delta w}, [w, \Phi'(w)] \right\rangle \\ &= 0, \quad \forall H. \end{aligned}$$

since

$$\langle a, [b, c] \rangle = \langle b, [c, a] \rangle = \langle c, [a, b] \rangle$$

$$[w, \Phi'(w)] = w_x \Phi''(w) w_y - w_y \Phi''(w) w_x = 0.$$

- ▶ These are **Casimir invariants**, independent of the Hamiltonian.

Casimir (degeneracy of the Poisson bracket)

Consider a general functional of vorticity:

$$C_\Phi[\omega] = \int_{\Omega} \Phi(\omega) dx.$$

Time evolution:

$$\begin{aligned} \frac{d}{dt} C_\Phi &= \left\langle w, \left[\Phi'(w), \frac{\delta H}{\delta u} \right] \right\rangle \\ &= \left\langle \frac{\delta H}{\delta w}, [w, \Phi'(w)] \right\rangle \\ &= 0, \quad \forall H. \end{aligned}$$

since

$$\langle a, [b, c] \rangle = \langle b, [c, a] \rangle = \langle c, [a, b] \rangle$$

$$[w, \Phi'(w)] = w_x \Phi''(w) w_y - w_y \Phi''(w) w_x = 0.$$

- ▶ These are **Casimir invariants**, independent of the Hamiltonian.
- ▶ Example: $\Phi(s) = \frac{1}{2} s^2$ gives the enstrophy ($\Phi(s) = s^p, p = 3, 4, \dots$)

Section 3

Mathematical challenges: computation of equilibria

Equilibria of Euler equation

$$u \times w = \nabla h, \quad w = \nabla \times u, \quad \nabla \cdot u = 0.$$

Equilibria of ideal MHD equation

$$j \times B = \nabla p, \quad j = \nabla \times B, \quad \nabla \cdot B = 0.$$

Equilibria of Euler equation

$$u \times w = \nabla h, \quad w = \nabla \times u, \quad \nabla \cdot u = 0.$$

Equilibria of ideal MHD equation

$$j \times B = \nabla p, \quad j = \nabla \times B, \quad \nabla \cdot B = 0.$$

Why do we care about these problems?

Equilibria of Euler equation

$$u \times w = \nabla h, \quad w = \nabla \times u, \quad \nabla \cdot u = 0.$$

Equilibria of ideal MHD equation

$$j \times B = \nabla p, \quad j = \nabla \times B, \quad \nabla \cdot B = 0.$$

Why do we care about these problems?

- ▶ Long term behaviour of solution of the time-dependent problem.

Equilibria of Euler equation

$$u \times w = \nabla h, \quad w = \nabla \times u, \quad \nabla \cdot u = 0.$$

Equilibria of ideal MHD equation

$$j \times B = \nabla p, \quad j = \nabla \times B, \quad \nabla \cdot B = 0.$$

Why do we care about these problems?

- ▶ Long term behaviour of solution of the time-dependent problem.
- ▶ Structures of the steady state leads to direct industrial application: fusion devices.

Equilibria of Euler equation

$$u \times w = \nabla h, \quad w = \nabla \times u, \quad \nabla \cdot u = 0.$$

Equilibria of ideal MHD equation

$$j \times B = \nabla p, \quad j = \nabla \times B, \quad \nabla \cdot B = 0.$$

Why do we care about these problems?

- ▶ Long term behaviour of solution of the time-dependent problem.
- ▶ Structures of the steady state leads to direct industrial application: fusion devices.
- ▶ **Key challenges: ill-posedness (nonuniqueness)**, especially for 3D problem.

Equilibria of Euler equation

$$u \times w = \nabla h, \quad w = \nabla \times u, \quad \nabla \cdot u = 0.$$

Equilibria of ideal MHD equation

$$j \times B = \nabla p, \quad j = \nabla \times B, \quad \nabla \cdot B = 0.$$

Why do we care about these problems?

- ▶ Long term behaviour of solution of the time-dependent problem.
- ▶ Structures of the steady state leads to direct industrial application: fusion devices.
- ▶ **Key challenges: ill-posedness (nonuniqueness)**, especially for 3D problem.
- ▶ Solutions:

Equilibria of Euler equation

$$u \times w = \nabla h, \quad w = \nabla \times u, \quad \nabla \cdot u = 0.$$

Equilibria of ideal MHD equation

$$j \times B = \nabla p, \quad j = \nabla \times B, \quad \nabla \cdot B = 0.$$

Why do we care about these problems?

- ▶ Long term behaviour of solution of the time-dependent problem.
- ▶ Structures of the steady state leads to direct industrial application: fusion devices.
- ▶ **Key challenges: ill-posedness (nonuniqueness)**, especially for 3D problem.
- ▶ Solutions:
 - ▶ We add some physical constraints (variational principle).

Equilibria of Euler equation

$$u \times w = \nabla h, \quad w = \nabla \times u, \quad \nabla \cdot u = 0.$$

Equilibria of ideal MHD equation

$$j \times B = \nabla p, \quad j = \nabla \times B, \quad \nabla \cdot B = 0.$$

Why do we care about these problems?

- ▶ Long term behaviour of solution of the time-dependent problem.
- ▶ Structures of the steady state leads to direct industrial application: fusion devices.
- ▶ **Key challenges: ill-posedness (nonuniqueness)**, especially for 3D problem.
- ▶ Solutions:
 - ▶ We add some physical constraints (variational principle).
 - ▶ We use artificial relaxation ($B \rightarrow B^*$) as $t \rightarrow \infty$.

Equilibria of Euler equation

$$u \times w = \nabla h, \quad w = \nabla \times u, \quad \nabla \cdot u = 0.$$

Equilibria of ideal MHD equation

$$j \times B = \nabla p, \quad j = \nabla \times B, \quad \nabla \cdot B = 0.$$

Why do we care about these problems?

- ▶ Long term behaviour of solution of the time-dependent problem.
- ▶ Structures of the steady state leads to direct industrial application: fusion devices.
- ▶ **Key challenges: ill-posedness (nonuniqueness)**, especially for 3D problem.
- ▶ Solutions:
 - ▶ We add some physical constraints (variational principle).
 - ▶ We use artificial relaxation ($B \rightarrow B^*$) as $t \rightarrow \infty$.

A great idea: **can we modify the Hamiltonian system to an artificial dynamical system that relaxes to an equilibrium of the considered physical system?**

- ▶ Bressan, C., Kraus, M., Maj, O., & Morrison, P. J. (2025). Metriplectic relaxation to equilibria. arXiv preprint arXiv:2506.09787.

- ▶ Bressan, C., Kraus, M., Maj, O., & Morrison, P. J. (2025). Metriplectic relaxation to equilibria. arXiv preprint arXiv:2506.09787.
- ▶ Bressan, C., Kraus, M., Morrison, P. J., & Maj, O. (2018, November). Relaxation to magnetohydrodynamics equilibria via collision brackets. In Journal of Physics: Conference Series (Vol. 1125, No. 1, p. 012002). IOP Publishing.

- ▶ Bressan, C., Kraus, M., Maj, O., & Morrison, P. J. (2025). Metriplectic relaxation to equilibria. arXiv preprint arXiv:2506.09787.
- ▶ Bressan, C., Kraus, M., Morrison, P. J., & Maj, O. (2018, November). Relaxation to magnetohydrodynamics equilibria via collision brackets. In Journal of Physics: Conference Series (Vol. 1125, No. 1, p. 012002). IOP Publishing.

Metriplectic dynamics (artificial relaxation): u_∞

- ▶ dissipating **entropy** $S(u)$.
- ▶ conserving the **Hamiltonian** $H(u)$.

- ▶ Bressan, C., Kraus, M., Maj, O., & Morrison, P. J. (2025). Metriplectic relaxation to equilibria. arXiv preprint arXiv:2506.09787.
- ▶ Bressan, C., Kraus, M., Morrison, P. J., & Maj, O. (2018, November). Relaxation to magnetohydrodynamics equilibria via collision brackets. In Journal of Physics: Conference Series (Vol. 1125, No. 1, p. 012002). IOP Publishing.

Metriplectic dynamics (artificial relaxation): u_∞

- ▶ dissipating **entropy** $S(u)$.
- ▶ conserving the **Hamiltonian** $H(u)$.

Variational principle (physical constraint): u_*

$$\min\{S(u) : u \in V, \quad H(u) = H(u_0)\}$$

Section 4

Steady state via variational principle

Minimization

$$\min\{S(u) : u \in V, \quad H(u) = H(u_0)\} \implies \boxed{\frac{\delta S}{\delta u}(u_e) = \lambda \frac{\delta H}{\delta u}(u_e)}$$

Minimization

$$\min\{S(u) : u \in V, \quad H(u) = H(u_0)\} \implies \boxed{\frac{\delta S}{\delta u}(u_e) = \lambda \frac{\delta H}{\delta u}(u_e)}$$

This is due to the constrained minimization with a functional $\mathcal{J}[u] = S(u) - \lambda(H(u) - H_0)$

$$\delta \mathcal{J}[u] = \delta(S(u) - \lambda H(u)) = 0.$$

Minimization

$$\min\{S(u) : u \in V, \quad H(u) = H(u_0)\} \implies \boxed{\frac{\delta S}{\delta u}(u_e) = \lambda \frac{\delta H}{\delta u}(u_e)}$$

This is due to the constrained minimization with a functional $\mathcal{J}[u] = S(u) - \lambda(H(u) - H_0)$

$$\delta \mathcal{J}[u] = \delta(S(u) - \lambda H(u)) = 0.$$

Applications:

Minimization

$$\min\{S(u) : u \in V, \quad H(u) = H(u_0)\} \implies \boxed{\frac{\delta S}{\delta u}(u_e) = \lambda \frac{\delta H}{\delta u}(u_e)}$$

This is due to the constrained minimization with a functional $\mathcal{J}[u] = S(u) - \lambda(H(u) - H_0)$

$$\delta \mathcal{J}[u] = \delta(S(u) - \lambda H(u)) = 0.$$

Applications:

- ▶ 2D steady Euler:

$$\mathcal{J}[\psi] = \frac{1}{2} \int_{\Omega} |\nabla \psi|^2 - \lambda \psi^2 dx \implies \Delta \psi = -\lambda \psi.$$

Minimization

$$\min\{S(u) : u \in V, \quad H(u) = H(u_0)\} \implies \boxed{\frac{\delta S}{\delta u}(u_e) = \lambda \frac{\delta H}{\delta u}(u_e)}$$

This is due to the constrained minimization with a functional $\mathcal{J}[u] = S(u) - \lambda(H(u) - H_0)$

$$\delta \mathcal{J}[u] = \delta(S(u) - \lambda H(u)) = 0.$$

Applications:

- ▶ 2D steady Euler:

$$\mathcal{J}[\psi] = \frac{1}{2} \int_{\Omega} |\nabla \psi|^2 - \lambda \psi^2 dx \implies \Delta \psi = -\lambda \psi.$$

- ▶ 2D Grad-Shafranov:

$$\mathcal{J}[u] = \frac{1}{2} \int_{\Omega} \frac{u^2(R, z)}{CR^2 + D} \frac{dR dz}{R} - \lambda u(R, z) \psi(R, z) \frac{dR dz}{R} \implies -\Delta^* \psi = \lambda(CR^2 + D)\psi.$$

Minimization

$$\min\{S(u) : u \in V, \quad H(u) = H(u_0)\} \implies \boxed{\frac{\delta S}{\delta u}(u_e) = \lambda \frac{\delta H}{\delta u}(u_e)}$$

This is due to the constrained minimization with a functional $\mathcal{J}[u] = S(u) - \lambda(H(u) - H_0)$

$$\delta \mathcal{J}[u] = \delta(S(u) - \lambda H(u)) = 0.$$

Applications:

- ▶ 2D steady Euler:

$$\mathcal{J}[\psi] = \frac{1}{2} \int_{\Omega} |\nabla \psi|^2 - \lambda \psi^2 dx \implies \Delta \psi = -\lambda \psi.$$

- ▶ 2D Grad-Shafranov:

$$\mathcal{J}[u] = \frac{1}{2} \int_{\Omega} \frac{u^2(R, z)}{CR^2 + D} \frac{dR dz}{R} - \lambda u(R, z) \psi(R, z) \frac{dR dz}{R} \implies -\Delta^* \psi = \lambda(CR^2 + D)\psi.$$

- ▶ 3D Force-free field:

$$\mathcal{J}[u] = \frac{1}{2} \int_{\Omega} |B|^2 - \lambda B \cdot A dx \implies \nabla \times B = \lambda B.$$

Section 5

Metriplectic dynamics: artificial relaxation

A modified Hamiltonian system

$$\frac{d}{dt}F(u) = \{F(u), H(u)\} + (F(u), S(u))$$

- ▶ $\{\cdot, \cdot\}$: Poisson bracket (anti-symmetric).
- ▶ (\cdot, \cdot) : metric bracket (symmetric, negative semi-definite).

A modified Hamiltonian system

$$\frac{d}{dt}F(u) = \{F(u), H(u)\} + (F(u), S(u))$$

- ▶ $\{\cdot, \cdot\}$: Poisson bracket (anti-symmetric).
- ▶ (\cdot, \cdot) : metric bracket (symmetric, negative semi-definite).

The Hamiltonian and entropy functionals must satisfy the conditions

$$\{F(u), S(u)\} = 0, \quad (F(u), H(u)) = 0, \quad \forall F.$$

A modified Hamiltonian system

$$\frac{d}{dt}F(u) = \{F(u), H(u)\} + (F(u), S(u))$$

- ▶ $\{\cdot, \cdot\}$: Poisson bracket (anti-symmetric).
- ▶ (\cdot, \cdot) : metric bracket (symmetric, negative semi-definite).

The Hamiltonian and entropy functionals must satisfy the conditions

$$\{F(u), S(u)\} = 0, \quad (F(u), H(u)) = 0, \quad \forall F.$$

These compatibility conditions imply

$$\frac{d}{dt}H(u) = 0, \quad \frac{d}{dt}S(u) = (S, S)(u) \leq 0.$$

A modified Hamiltonian system

$$\frac{d}{dt}F(u) = \{F(u), H(u)\} + (F(u), S(u))$$

- ▶ $\{\cdot, \cdot\}$: Poisson bracket (anti-symmetric).
- ▶ (\cdot, \cdot) : metric bracket (symmetric, negative semi-definite).

The Hamiltonian and entropy functionals must satisfy the conditions

$$\{F(u), S(u)\} = 0, \quad (F(u), H(u)) = 0, \quad \forall F.$$

These compatibility conditions imply

$$\frac{d}{dt}H(u) = 0, \quad \frac{d}{dt}S(u) = (S, S)(u) \leq 0.$$

- ▶ The entropy is dissipated at constant Hamiltonian.

A modified Hamiltonian system

$$\frac{d}{dt}F(u) = \{F(u), H(u)\} + (F(u), S(u))$$

- ▶ $\{\cdot, \cdot\}$: Poisson bracket (anti-symmetric).
- ▶ (\cdot, \cdot) : metric bracket (symmetric, negative semi-definite).

The Hamiltonian and entropy functionals must satisfy the conditions

$$\{F(u), S(u)\} = 0, \quad (F(u), H(u)) = 0, \quad \forall F.$$

These compatibility conditions imply

$$\frac{d}{dt}H(u) = 0, \quad \frac{d}{dt}S(u) = (S, S)(u) \leq 0.$$

- ▶ The entropy is dissipated at constant Hamiltonian.
- ▶ If S is bounded below, the system will evolve on the manifold $H(u) = H(u_0)$, toward a state that satisfies $(S, S) = 0$, i.e.

$$\{F, H\}(u_e) + (F, S)(u_e) = 0.$$

We can define the bracket

$$\{A, B\} = \int_{\Omega} \frac{\delta A}{\delta u}(x) J(u) \frac{\delta B}{\delta u}(x) d\mu(x),$$

$$(A, B) = - \int_{\Omega} \frac{\delta A}{\delta u}(x) K(u) \frac{\delta B}{\delta u}(x) d\mu(x)$$

- ▶ $J(u)$: antisymmetric operator
- ▶ $K(u)$: symmetric operator, positive & semi-definite.

We can define the bracket

$$\{A, B\} = \int_{\Omega} \frac{\delta A}{\delta u}(x) J(u) \frac{\delta B}{\delta u}(x) d\mu(x),$$

$$(A, B) = - \int_{\Omega} \frac{\delta A}{\delta u}(x) K(u) \frac{\delta B}{\delta u}(x) d\mu(x)$$

- ▶ $J(u)$: antisymmetric operator
- ▶ $K(u)$: symmetric operator, positive & semi-definite.

We have

$$\frac{d}{dt} F(u) = \langle \frac{\delta F}{\delta u}, u_t \rangle,$$

$$\{F, H\}(u) = \langle \frac{\delta F}{\delta u}, J(u) \frac{\delta H}{\delta u} \rangle,$$

$$(F, S)(u) = - \langle \frac{\delta F}{\delta u}, K(u) \frac{\delta S}{\delta u} \rangle.$$

We can define the bracket

$$\{A, B\} = \int_{\Omega} \frac{\delta A}{\delta u}(x) J(u) \frac{\delta B}{\delta u}(x) d\mu(x),$$

$$(A, B) = - \int_{\Omega} \frac{\delta A}{\delta u}(x) K(u) \frac{\delta B}{\delta u}(x) d\mu(x)$$

- ▶ $J(u)$: antisymmetric operator
- ▶ $K(u)$: symmetric operator, positive & semi-definite.

We have

$$\frac{d}{dt} F(u) = \left\langle \frac{\delta F}{\delta u}, u_t \right\rangle,$$

$$\{F, H\}(u) = \left\langle \frac{\delta F}{\delta u}, J(u) \frac{\delta H}{\delta u} \right\rangle,$$

$$(F, S)(u) = - \left\langle \frac{\delta F}{\delta u}, K(u) \frac{\delta S}{\delta u} \right\rangle.$$

Strong form of the dynamics

$$\frac{d}{dt} F(u) = \{F, H\} + (F, S) \implies \boxed{\frac{d}{dt} u = J(u) \frac{\delta H}{\delta u} - K(u) \frac{\delta S}{\delta u}}.$$

Steady state

If u_e is the steady state of the variational principle, then it is also the steady state of the metriplectic dynamics. The converse is not true.

Steady state

If u_e is the steady state of the variational principle, then it is also the steady state of the metriplectic dynamics. The converse is not true.

Proof: since u_e satisfies $\frac{\delta S}{\delta u} = \lambda \frac{\delta H}{\delta u}$, then

$$\begin{aligned}\frac{d}{dt}u &= J(u)\frac{\delta H}{\delta u} - K(u)\frac{\delta S}{\delta u}|_{u_e} \\ &= (J(u) - \lambda K(u))\frac{\delta H}{\delta u} \\ &= 0,\end{aligned}$$

due to the compatibility condition

$$\begin{aligned}\{F, S\} = 0 &\implies J(u)\frac{\delta S}{\delta u} = 0, \\ (F, H) = 0 &\implies K(u)\frac{\delta H}{\delta u} = 0.\end{aligned}$$

Therefore,

$$u_{\text{variational}}^* \subset u_{\text{dynamics}}^*$$

Therefore,

$$u_{\text{variational}}^* \subset u_{\text{dynamics}}^*$$

Completely relaxed state

If the solution of the metriplectic dynamics satisfies

$$\lim_{t \rightarrow \infty} u(t) = u_{\text{variational}}^*, \quad H(u_{\text{variational}}^*) = H_0.$$

We say the system is **completely relaxed**.

Therefore,

$$u_{\text{variational}}^* \subset u_{\text{dynamics}}^*$$

Completely relaxed state

If the solution of the metriplectic dynamics satisfies

$$\lim_{t \rightarrow \infty} u(t) = u_{\text{variational}}^*, \quad H(u_{\text{variational}}^*) = H_0.$$

We say the system is **completely relaxed**.

- ▶ Unfortunately, complete relaxation does not always happen.

Therefore,

$$u_{\text{variational}}^* \subset u_{\text{dynamics}}^*$$

Completely relaxed state

If the solution of the metriplectic dynamics satisfies

$$\lim_{t \rightarrow \infty} u(t) = u_{\text{variational}}^*, \quad H(u_{\text{variational}}^*) = H_0.$$

We say the system is **completely relaxed**.

- ▶ Unfortunately, complete relaxation does not always happen.
- ▶ It depends on the null space of the metric brackets.

Section 6

How to construct the metric bracket?

- ▶ Collision-like brackets: computationally expensive due to nonlocality.

- ▶ Collision-like brackets: computationally expensive due to nonlocality.
- ▶ Diffusion-like brackets: computationally friendly.

- ▶ Collision-like brackets: computationally expensive due to nonlocality.
- ▶ Diffusion-like brackets: computationally friendly.

Diffusion-like bracket

The diffusion bracket is defined as

$$(F, G) = - \int_{\Omega} L_i \left(\frac{\delta F}{\delta u} \right) D_{ij} L_i \left(\frac{\delta G}{\delta u} \right) d\mu(x)$$

where

- ▶ $L_i: V \rightarrow V'$ is some linear operator.
- ▶ $H = H(u)$ and $\frac{\delta H}{\delta u} \in V$.
- ▶ $D = D_{ij}(x)$ s.t. it is
 - ▶ symmetric, positive semi-definite
 - ▶ $g_i D_{ij} = 0$ where $g_i = L_i \left(\frac{\delta H}{\delta u} \right)$.
- ▶ μ : a positive measure on Ω .

Properties of diffusion-like bracket

- ▶ $(F, G) = (G, F)$.
- ▶ $(H, G) = 0$ where H is the Hamiltonian.
- ▶ $(F, F) \leq 0$.

Properties of diffusion-like bracket

- ▶ $(F, G) = (G, F)$.
- ▶ $(H, G) = 0$ where H is the Hamiltonian.
- ▶ $(F, F) \leq 0$.

Evolution equation

$$\frac{d}{dt}F = (F, S), \quad \forall F = F(u).$$

Properties of diffusion-like bracket

- ▶ $(F, G) = (G, F)$.
- ▶ $(H, G) = 0$ where H is the Hamiltonian.
- ▶ $(F, F) \leq 0$.

Evolution equation

$$\frac{d}{dt}F = (F, S), \quad \forall F = F(u).$$

This implies dissipative entropy at constant Hamiltonian

$$\frac{d}{dt}H = 0, \quad \frac{d}{dt}S \leq 0.$$

Properties of diffusion-like bracket

- ▶ $(F, G) = (G, F)$.
- ▶ $(H, G) = 0$ where H is the Hamiltonian.
- ▶ $(F, F) \leq 0$.

Evolution equation

$$\frac{d}{dt}F = (F, S), \quad \forall F = F(u).$$

This implies dissipative entropy at constant Hamiltonian

$$\frac{d}{dt}H = 0, \quad \frac{d}{dt}S \leq 0.$$

Two diffusion-like brackets: div-grad bracket and curl-curl-like bracket.

curl-curl bracket $L = \nabla \times$

$$(F, S) = - \int_{\Omega} \left(\nabla \times \frac{\delta F}{\delta u} \right) \cdot D \left(\nabla \times \frac{\delta S}{\delta u} \right) dx = - \int_{\Omega} \frac{\delta F}{\delta u} \nabla \times \left[D \left(\nabla \times \frac{\delta S}{\delta u} \right) \right] dx$$

curl-curl bracket $L = \nabla \times$

$$(F, S) = - \int_{\Omega} \left(\nabla \times \frac{\delta F}{\delta u} \right) \cdot D \left(\nabla \times \frac{\delta S}{\delta u} \right) dx = - \int_{\Omega} \frac{\delta F}{\delta u} \nabla \times \left[D \left(\nabla \times \frac{\delta S}{\delta u} \right) \right] dx$$

- $D = |g|^2 I - g \otimes g = |g|^2 \left(I - \frac{g \otimes g}{|g|^2} \right)$ is the orthogonal projection.

curl-curl bracket $L = \nabla \times$

$$(F, S) = - \int_{\Omega} \left(\nabla \times \frac{\delta F}{\delta u} \right) \cdot D \left(\nabla \times \frac{\delta S}{\delta u} \right) dx = - \int_{\Omega} \frac{\delta F}{\delta u} \nabla \times \left[D \left(\nabla \times \frac{\delta S}{\delta u} \right) \right] dx$$

- ▶ $D = |g|^2 I - g \otimes g = |g|^2 \left(I - \frac{g \otimes g}{|g|^2} \right)$ is the orthogonal projection.
- ▶ $g = \nabla \times A = B$

curl-curl bracket $L = \nabla \times$

$$(F, S) = - \int_{\Omega} \left(\nabla \times \frac{\delta F}{\delta u} \right) \cdot D \left(\nabla \times \frac{\delta S}{\delta u} \right) dx = - \int_{\Omega} \frac{\delta F}{\delta u} \nabla \times \left[D \left(\nabla \times \frac{\delta S}{\delta u} \right) \right] dx$$

- ▶ $D = |g|^2 I - g \otimes g = |g|^2 \left(I - \frac{g \otimes g}{|g|^2} \right)$ is the orthogonal projection.
- ▶ $g = \nabla \times A = B$
- ▶ $S = \frac{1}{2} \int_{\Omega} B \cdot B dx$ and $H = \frac{1}{2} \int_{\Omega} A \cdot B dx$.

curl-curl bracket $L = \nabla \times$

$$(F, S) = - \int_{\Omega} \left(\nabla \times \frac{\delta F}{\delta u} \right) \cdot D \left(\nabla \times \frac{\delta S}{\delta u} \right) dx = - \int_{\Omega} \frac{\delta F}{\delta u} \nabla \times \left[D \left(\nabla \times \frac{\delta S}{\delta u} \right) \right] dx$$

- ▶ $D = |g|^2 I - g \otimes g = |g|^2 \left(I - \frac{g \otimes g}{|g|^2} \right)$ is the orthogonal projection.
- ▶ $g = \nabla \times A = B$
- ▶ $S = \frac{1}{2} \int_{\Omega} B \cdot B dx$ and $H = \frac{1}{2} \int_{\Omega} A \cdot B dx$.

$$\frac{\partial B}{\partial t} = -\nabla \times [D \nabla \times B]$$

curl-curl bracket $L = \nabla \times$

$$(F, S) = - \int_{\Omega} \left(\nabla \times \frac{\delta F}{\delta u} \right) \cdot D \left(\nabla \times \frac{\delta S}{\delta u} \right) dx = - \int_{\Omega} \frac{\delta F}{\delta u} \nabla \times \left[D \left(\nabla \times \frac{\delta S}{\delta u} \right) \right] dx$$

- ▶ $D = |g|^2 I - g \otimes g = |g|^2 \left(I - \frac{g \otimes g}{|g|^2} \right)$ is the orthogonal projection.
- ▶ $g = \nabla \times A = B$
- ▶ $S = \frac{1}{2} \int_{\Omega} B \cdot B dx$ and $H = \frac{1}{2} \int_{\Omega} A \cdot B dx$.

$$\frac{\partial B}{\partial t} = -\nabla \times [D \nabla \times B]$$

By using the identity

$$Dh = |g|^2 h - (g \otimes g)h = |g|^2 h - (g \cdot h)g = -g \times (g \times h)$$

curl-curl bracket $L = \nabla \times$

$$(F, S) = - \int_{\Omega} \left(\nabla \times \frac{\delta F}{\delta u} \right) \cdot D \left(\nabla \times \frac{\delta S}{\delta u} \right) dx = - \int_{\Omega} \frac{\delta F}{\delta u} \nabla \times \left[D \left(\nabla \times \frac{\delta S}{\delta u} \right) \right] dx$$

- ▶ $D = |g|^2 I - g \otimes g = |g|^2 \left(I - \frac{g \otimes g}{|g|^2} \right)$ is the orthogonal projection.
- ▶ $g = \nabla \times A = B$
- ▶ $S = \frac{1}{2} \int_{\Omega} B \cdot B dx$ and $H = \frac{1}{2} \int_{\Omega} A \cdot B dx$.

$$\frac{\partial B}{\partial t} = -\nabla \times [D \nabla \times B]$$

By using the identity

$$Dh = |g|^2 h - (g \otimes g)h = |g|^2 h - (g \cdot h)g = -g \times (g \times h)$$

We end up with

$$\boxed{\frac{\partial B}{\partial t} = \nabla \times (B \times (B \times (\nabla \times B)))}$$

$$\frac{\partial B}{\partial t} - \nabla \times (u \times B) = 0,$$
$$u = (\nabla \times B) \times B.$$

- ▶ Magneto-frictional equation.

$$\frac{\partial B}{\partial t} - \nabla \times (u \times B) = 0,$$
$$u = (\nabla \times B) \times B.$$

- ▶ Magneto-frictional equation.
- ▶ Dissipative entropy (magnetic energy): $\frac{d}{dt} \int B \cdot B \, dx = -\|(\nabla \times B) \times B\|^2$.

$$\frac{\partial B}{\partial t} - \nabla \times (u \times B) = 0,$$
$$u = (\nabla \times B) \times B.$$

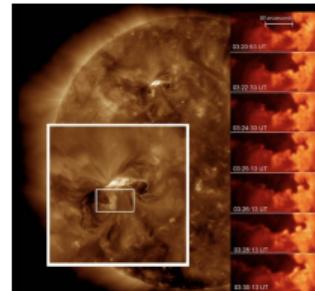
- ▶ Magneto-frictional equation.
- ▶ Dissipative entropy (magnetic energy): $\frac{d}{dt} \int B \cdot B \, dx = -\|(\nabla \times B) \times B\|^2$.
- ▶ Conserved Hamiltonian (magnetic helicity): $\frac{d}{dt} \int A \cdot B \, dx = 0$.

Selective decay (non-ideal)

- ▶ In 3D fluid or MHD, energy and helicity decay at different rates.
- ▶ One quantity is dissipative while another one is approximately constant.
- ▶ Statistical mechanics predictions: large-scale behaviour should be presented instead of random small scale behaviour.
- ▶ Numerical experiments: small-scale behaviour.

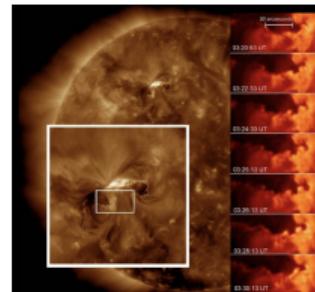
Selective decay (non-ideal)

- ▶ In 3D fluid or MHD, energy and helicity decay at different rates.
- ▶ One quantity is dissipative while another one is approximately constant.
- ▶ Statistical mechanics predictions: large-scale behaviour should be presented instead of random small scale behaviour.
- ▶ Numerical experiments: small-scale behaviour.



Selective decay (non-ideal)

- ▶ In 3D fluid or MHD, energy and helicity decay at different rates.
- ▶ One quantity is dissipative while another one is approximately constant.
- ▶ Statistical mechanics predictions: large-scale behaviour should be presented instead of random small scale behaviour.
- ▶ Numerical experiments: small-scale behaviour.



Question

We know that Lie-Poisson bracket yield two types of conservation, can we modify to impose such selective decay?

Again, consider Hamiltonian H and Casimir C :

$$\frac{df(w)}{dt} = \underbrace{\left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle}_{\{f, H\}} - \theta \left\langle \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

Again, consider Hamiltonian H and Casimir C :

$$\frac{df(w)}{dt} = \underbrace{\left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle}_{\{f, H\}} - \theta \left\langle \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

We immediately have

$$\frac{d}{dt} H(w) = 0,$$

$$\frac{dC(w)}{dt} = -\theta \left\langle \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle = -\theta \left\| \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\|_L^2$$

Again, consider Hamiltonian H and Casimir C :

$$\frac{df(w)}{dt} = \underbrace{\left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle}_{\{f, H\}} - \theta \left\langle \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

We immediately have

$$\frac{d}{dt} H(w) = 0,$$

$$\frac{dC(w)}{dt} = -\theta \left\langle \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle = -\theta \left\| \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\|_L^2$$

- $L = (1 - \alpha^2 \Delta)^s$ to define Sobolev H^s inner product.

Again, consider Hamiltonian H and Casimir C :

$$\frac{df(w)}{dt} = \underbrace{\left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle}_{\{f, H\}} - \theta \left\langle \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

We immediately have

$$\frac{d}{dt} H(w) = 0,$$

$$\frac{dC(w)}{dt} = -\theta \left\langle \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle = -\theta \left\| \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\|_L^2$$

- ▶ $L = (1 - \alpha^2 \Delta)^s$ to define Sobolev H^s inner product.
- ▶ $L = (1 + \alpha^2 |k|^2)^s$: high wavenumber dissipates faster (small scale)

Again, consider Hamiltonian H and Casimir C :

$$\frac{df(w)}{dt} = \underbrace{\left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle}_{\{f, H\}} - \theta \left\langle \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

We immediately have

$$\frac{d}{dt} H(w) = 0,$$

$$\frac{dC(w)}{dt} = -\theta \left\langle \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle = -\theta \left\| \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\|_L^2$$

- ▶ $L = (1 - \alpha^2 \Delta)^s$ to define Sobolev H^s inner product.
- ▶ $L = (1 + \alpha^2 |k|^2)^s$: high wavenumber dissipates faster (small scale)
- ▶ This can be used to control the selective scale

Again, consider Hamiltonian H and Casimir C :

$$\frac{df(w)}{dt} = \underbrace{\left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle}_{\{f, H\}} - \theta \left\langle \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

We immediately have

$$\frac{d}{dt} H(w) = 0,$$

$$\frac{dC(w)}{dt} = -\theta \left\langle \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle = -\theta \left\| \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\|_L^2$$

- ▶ $L = (1 - \alpha^2 \Delta)^s$ to define Sobolev H^s inner product.
- ▶ $L = (1 + \alpha^2 |k|^2)^s$: high wavenumber dissipates faster (small scale)
- ▶ This can be used to control the selective scale
- ▶ Gay-Balmaz F, Holm D D. Selective decay by Casimir dissipation in inviscid fluids[J]. Nonlinearity, 2013, 26(2): 495.

Again, consider Hamiltonian H and Casimir C :

$$\frac{df(w)}{dt} = \underbrace{\left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle}_{\{f, H\}} - \theta \left\langle \left[\frac{\delta f}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle$$

We immediately have

$$\frac{d}{dt} H(w) = 0,$$

$$\frac{dC(w)}{dt} = -\theta \left\langle \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right], L \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\rangle = -\theta \left\| \left[\frac{\delta C}{\delta w}, \frac{\delta H}{\delta w} \right] \right\|_L^2$$

- ▶ $L = (1 - \alpha^2 \Delta)^s$ to define Sobolev H^s inner product.
- ▶ $L = (1 + \alpha^2 |k|^2)^s$: high wavenumber dissipates faster (small scale)
- ▶ This can be used to control the selective scale
- ▶ Gay-Balmaz F, Holm D D. Selective decay by Casimir dissipation in inviscid fluids[J]. Nonlinearity, 2013, 26(2): 495.
- ▶ Application to magnetic equilibrium $\delta(H + C) = 0$: Gay-Balmaz, François, and Darryl D. Holm. "A geometric theory of selective decay with applications in MHD." Nonlinearity 27.8 (2014): 1747.

GENERIC system (General equation for the non-equilibrium reversible–irreversible coupling) by **Hans C. Öttinger** (1997).

$$\frac{dx}{dt} = L \frac{\delta E}{\delta x} + M \frac{\delta S}{\delta x}.$$

GENERIC system (General equation for the non-equilibrium reversible–irreversible coupling) by **Hans C. Öttinger** (1997).

$$\frac{dx}{dt} = L \frac{\delta E}{\delta x} + M \frac{\delta S}{\delta x}.$$

Compatibility conditions

$$L \frac{\delta S}{\delta x} = 0, \quad M \frac{\delta E}{\delta x} = 0.$$

GENERIC system (General equation for the non-equilibrium reversible–irreversible coupling) by **Hans C. Öttinger** (1997).

$$\frac{dx}{dt} = L \frac{\delta E}{\delta x} + M \frac{\delta S}{\delta x}.$$

Compatibility conditions

$$L \frac{\delta S}{\delta x} = 0, \quad M \frac{\delta E}{\delta x} = 0.$$

GENERIC system (General equation for the non-equilibrium reversible–irreversible coupling) by **Hans C. Öttinger** (1997).

$$\frac{dx}{dt} = L \frac{\delta E}{\delta x} + M \frac{\delta S}{\delta x}.$$

Compatibility conditions

$$L \frac{\delta S}{\delta x} = 0, \quad M \frac{\delta E}{\delta x} = 0.$$

- ▶ L : antisymmetric Poisson operator; generates reversible dynamics;

GENERIC system (General equation for the non-equilibrium reversible–irreversible coupling) by **Hans C. Öttinger** (1997).

$$\frac{dx}{dt} = L \frac{\delta E}{\delta x} + M \frac{\delta S}{\delta x}.$$

Compatibility conditions

$$L \frac{\delta S}{\delta x} = 0, \quad M \frac{\delta E}{\delta x} = 0.$$

- ▶ L : antisymmetric Poisson operator; generates reversible dynamics;
- ▶ M : symmetric positive semidefinite metric operator; generates irreversible dynamics

GENERIC system (General equation for the non-equilibrium reversible–irreversible coupling) by **Hans C. Öttinger** (1997).

$$\frac{dx}{dt} = L \frac{\delta E}{\delta x} + M \frac{\delta S}{\delta x}.$$

Compatibility conditions

$$L \frac{\delta S}{\delta x} = 0, \quad M \frac{\delta E}{\delta x} = 0.$$

- ▶ L : antisymmetric Poisson operator; generates reversible dynamics;
- ▶ M : symmetric positive semidefinite metric operator; generates irreversible dynamics

$$\text{Energy: } \frac{dE}{dt} = \left\langle \frac{\delta E}{\delta x}, L \frac{\delta E}{\delta x} \right\rangle + \left\langle \frac{\delta E}{\delta x}, M \frac{\delta S}{\delta x} \right\rangle = 0$$

(antisymmetry of L and degeneracy $M \delta E / \delta x = 0$)

GENERIC system (General equation for the non-equilibrium reversible–irreversible coupling) by **Hans C. Öttinger** (1997).

$$\frac{dx}{dt} = L \frac{\delta E}{\delta x} + M \frac{\delta S}{\delta x}.$$

Compatibility conditions

$$L \frac{\delta S}{\delta x} = 0, \quad M \frac{\delta E}{\delta x} = 0.$$

- ▶ L : antisymmetric Poisson operator; generates reversible dynamics;
- ▶ M : symmetric positive semidefinite metric operator; generates irreversible dynamics

$$\text{Energy: } \frac{dE}{dt} = \left\langle \frac{\delta E}{\delta x}, L \frac{\delta E}{\delta x} \right\rangle + \left\langle \frac{\delta E}{\delta x}, M \frac{\delta S}{\delta x} \right\rangle = 0$$

(antisymmetry of L and degeneracy $M \delta E / \delta x = 0$)

$$\text{Entropy: } \frac{dS}{dt} = \left\langle \frac{\delta S}{\delta x}, L \frac{\delta E}{\delta x} \right\rangle + \left\langle \frac{\delta S}{\delta x}, M \frac{\delta S}{\delta x} \right\rangle \geq 0$$

(degeneracy $L \delta S / \delta x = 0$ and positivity of M)

GENERIC system (General equation for the non-equilibrium reversible–irreversible coupling) by **Hans C. Öttinger** (1997).

$$\frac{dx}{dt} = L \frac{\delta E}{\delta x} + M \frac{\delta S}{\delta x}.$$

Compatibility conditions

$$L \frac{\delta S}{\delta x} = 0, \quad M \frac{\delta E}{\delta x} = 0.$$

- ▶ L : antisymmetric Poisson operator; generates reversible dynamics;
- ▶ M : symmetric positive semidefinite metric operator; generates irreversible dynamics

$$\text{Energy: } \frac{dE}{dt} = \left\langle \frac{\delta E}{\delta x}, L \frac{\delta E}{\delta x} \right\rangle + \left\langle \frac{\delta E}{\delta x}, M \frac{\delta S}{\delta x} \right\rangle = 0$$

(antisymmetry of L and degeneracy $M \delta E / \delta x = 0$)

$$\text{Entropy: } \frac{dS}{dt} = \left\langle \frac{\delta S}{\delta x}, L \frac{\delta E}{\delta x} \right\rangle + \left\langle \frac{\delta S}{\delta x}, M \frac{\delta S}{\delta x} \right\rangle \geq 0$$

(degeneracy $L \delta S / \delta x = 0$ and positivity of M)

GENERIC system (General equation for the non-equilibrium reversible–irreversible coupling) by **Hans C. Öttinger** (1997).

$$\frac{dx}{dt} = L \frac{\delta E}{\delta x} + M \frac{\delta S}{\delta x}.$$

Compatibility conditions

$$L \frac{\delta S}{\delta x} = 0, \quad M \frac{\delta E}{\delta x} = 0.$$

- ▶ L : antisymmetric Poisson operator; generates reversible dynamics;
- ▶ M : symmetric positive semidefinite metric operator; generates irreversible dynamics

$$\text{Energy: } \frac{dE}{dt} = \left\langle \frac{\delta E}{\delta x}, L \frac{\delta E}{\delta x} \right\rangle + \left\langle \frac{\delta E}{\delta x}, M \frac{\delta S}{\delta x} \right\rangle = 0$$

(antisymmetry of L and degeneracy $M \delta E / \delta x = 0$)

$$\text{Entropy: } \frac{dS}{dt} = \left\langle \frac{\delta S}{\delta x}, L \frac{\delta E}{\delta x} \right\rangle + \left\langle \frac{\delta S}{\delta x}, M \frac{\delta S}{\delta x} \right\rangle \geq 0$$

(degeneracy $L \delta S / \delta x = 0$ and positivity of M)

- ▶ $L \frac{\delta E}{\delta x}$: conservative, time-reversal symmetric dynamics.

GENERIC system (General equation for the non-equilibrium reversible–irreversible coupling) by **Hans C. Öttinger** (1997).

$$\frac{dx}{dt} = L \frac{\delta E}{\delta x} + M \frac{\delta S}{\delta x}.$$

Compatibility conditions

$$L \frac{\delta S}{\delta x} = 0, \quad M \frac{\delta E}{\delta x} = 0.$$

- ▶ L : antisymmetric Poisson operator; generates reversible dynamics;
- ▶ M : symmetric positive semidefinite metric operator; generates irreversible dynamics

$$\text{Energy: } \frac{dE}{dt} = \left\langle \frac{\delta E}{\delta x}, L \frac{\delta E}{\delta x} \right\rangle + \left\langle \frac{\delta E}{\delta x}, M \frac{\delta S}{\delta x} \right\rangle = 0$$

(antisymmetry of L and degeneracy $M \delta E / \delta x = 0$)

$$\text{Entropy: } \frac{dS}{dt} = \left\langle \frac{\delta S}{\delta x}, L \frac{\delta E}{\delta x} \right\rangle + \left\langle \frac{\delta S}{\delta x}, M \frac{\delta S}{\delta x} \right\rangle \geq 0$$

(degeneracy $L \delta S / \delta x = 0$ and positivity of M)

- ▶ $L \frac{\delta E}{\delta x}$: conservative, time-reversal symmetric dynamics.
- ▶ $M \frac{\delta S}{\delta x}$: dissipative relaxation toward equilibrium.

Section 8

Numerical methods

Let's go back to the magneto-frictional equations, where we have two structures

$$\partial_t A = f, \quad \frac{d}{dt} \mathcal{E} \leq 0, \quad \mathcal{H} = \mathcal{H}_0$$

Let's go back to the magneto-frictional equations, where we have two structures

$$\partial_t A = f, \quad \frac{d}{dt} \mathcal{E} \leq 0, \quad \mathcal{H} = \mathcal{H}_0$$

Let's go back to the magneto-frictional equations, where we have two structures

$$\partial_t A = f, \quad \frac{d}{dt} \mathcal{E} \leq 0, \quad \mathcal{H} = \mathcal{H}_0$$

$$\begin{aligned}\mathcal{E}^{n+1}(A) - \mathcal{E}^n(A) &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\frac{\delta \mathcal{E}}{\delta A}}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\nabla \times B}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (f, \boxed{\nabla \times B}) dt\end{aligned}$$

Let's go back to the magneto-frictional equations, where we have two structures

$$\partial_t A = f, \quad \frac{d}{dt} \mathcal{E} \leq 0, \quad \mathcal{H} = \mathcal{H}_0$$

$$\begin{aligned} \mathcal{E}^{n+1}(A) - \mathcal{E}^n(A) &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\frac{\delta \mathcal{E}}{\delta A}}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\nabla \times B}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (f, \boxed{\nabla \times B}) dt \end{aligned}$$

$$\begin{aligned} \mathcal{H}^{n+1} - \mathcal{H}^n &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\frac{\delta \mathcal{H}}{\delta A}}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{B}) dt \end{aligned}$$

Let's go back to the magneto-frictional equations, where we have two structures

$$\partial_t A = f, \quad \frac{d}{dt} \mathcal{E} \leq 0, \quad \mathcal{H} = \mathcal{H}_0$$

$$\begin{aligned} \mathcal{E}^{n+1}(A) - \mathcal{E}^n(A) &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\frac{\delta \mathcal{E}}{\delta A}}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\nabla \times B}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (f, \boxed{\nabla \times B}) dt \end{aligned}$$

$$\begin{aligned} \mathcal{H}^{n+1} - \mathcal{H}^n &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\frac{\delta \mathcal{H}}{\delta A}}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{B}) dt \end{aligned}$$

- ▶ Viewing this from finite element in time, the variation can be seen as associated test function.

Let's go back to the magneto-frictional equations, where we have two structures

$$\partial_t A = f, \quad \frac{d}{dt} \mathcal{E} \leq 0, \quad \mathcal{H} = \mathcal{H}_0$$

$$\begin{aligned} \mathcal{E}^{n+1}(A) - \mathcal{E}^n(A) &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\frac{\delta \mathcal{E}}{\delta A}}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\nabla \times B}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (f, \boxed{\nabla \times B}) dt \end{aligned}$$

$$\begin{aligned} \mathcal{H}^{n+1} - \mathcal{H}^n &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\frac{\delta \mathcal{H}}{\delta A}}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{B}) dt \end{aligned}$$

- ▶ Viewing this from finite element in time, the variation can be seen as associated test function.
- ▶ We introduce auxiliary variables $j = \nabla_h \times B$ and $H = \mathbb{Q}^c B$ to project the variation into the same space as A .

Let's go back to the magneto-frictional equations, where we have two structures

$$\partial_t A = f, \quad \frac{d}{dt} \mathcal{E} \leq 0, \quad \mathcal{H} = \mathcal{H}_0$$

$$\begin{aligned} \mathcal{E}^{n+1}(A) - \mathcal{E}^n(A) &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\frac{\delta \mathcal{E}}{\delta A}}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\nabla \times B}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (f, \boxed{\nabla \times B}) dt \end{aligned}$$

$$\begin{aligned} \mathcal{H}^{n+1} - \mathcal{H}^n &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{\frac{\delta \mathcal{H}}{\delta A}}) dt \\ &= 2 \int_{t_n}^{t_{n+1}} (\partial_t A, \boxed{B}) dt \end{aligned}$$

- ▶ Viewing this from finite element in time, the variation can be seen as associated test function.
- ▶ We introduce auxiliary variables $j = \nabla_h \times B$ and $H = \mathbb{Q}^c B$ to project the variation into the same space as A .
- ▶ He M, Farrell P E, Hu K, Andrews D. B. Helicity-preserving finite element discretization for magnetic relaxation. SISC, 2025.

Introducing two scalars to modify the system:

$$\partial_t A + \lambda_E \begin{bmatrix} \delta \mathcal{E} \\ \delta A \end{bmatrix} + \lambda_H \begin{bmatrix} \delta \mathcal{H} \\ \delta A \end{bmatrix} = f.$$
$$\frac{d}{dt} \mathcal{E} = -F,$$
$$\frac{d}{dt} \mathcal{H} = 0.$$

Introducing two scalars to modify the system:

$$\partial_t A + \lambda_E \begin{bmatrix} \delta \mathcal{E} \\ \delta A \end{bmatrix} + \lambda_H \begin{bmatrix} \delta \mathcal{H} \\ \delta A \end{bmatrix} = f.$$
$$\frac{d}{dt} \mathcal{E} = -F,$$
$$\frac{d}{dt} \mathcal{H} = 0.$$

- When we modify our system by variations, we need a compatibility condition.

Introducing two scalars to modify the system:

$$\partial_t A + \lambda_E \begin{bmatrix} \delta \mathcal{E} \\ \delta A \end{bmatrix} + \lambda_H \begin{bmatrix} \delta \mathcal{H} \\ \delta A \end{bmatrix} = f.$$

$$\frac{d}{dt} \mathcal{E} = -F,$$

$$\frac{d}{dt} \mathcal{H} = 0.$$

- ▶ When we modify our system by variations, we need a compatibility condition.
- ▶ $(\partial_t A, \frac{\delta \mathcal{E}}{\delta A}) = -F$, and $(\partial_t A, \frac{\delta \mathcal{H}}{\delta A}) = 0$.
- ▶ Compatibility condition

$$\begin{pmatrix} \|B\|^2 & (j, B) \\ (j, B) & \|j\|^2 \end{pmatrix} \begin{pmatrix} \lambda_H \\ \lambda_E \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Introducing two scalars to modify the system:

$$\partial_t A + \lambda_E \begin{bmatrix} \delta \mathcal{E} \\ \delta A \end{bmatrix} + \lambda_H \begin{bmatrix} \delta \mathcal{H} \\ \delta A \end{bmatrix} = f.$$

$$\frac{d}{dt} \mathcal{E} = -F,$$

$$\frac{d}{dt} \mathcal{H} = 0.$$

- ▶ When we modify our system by variations, we need a compatibility condition.
- ▶ $(\partial_t A, \frac{\delta \mathcal{E}}{\delta A}) = -F$, and $(\partial_t A, \frac{\delta \mathcal{H}}{\delta A}) = 0$.
- ▶ Compatibility condition

$$\begin{pmatrix} \|B\|^2 & (j, B) \\ (j, B) & \|j\|^2 \end{pmatrix} \begin{pmatrix} \lambda_H \\ \lambda_E \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

- ▶ Thus, the determinant of the matrix is

$$\|B\|^2 \|j\|^2 - (j, B)^2 > 0,$$

if $B \nparallel j$ (i.e. $j \times B \neq 0$), $B \neq 0$ and $j \neq 0$.

Introducing two scalars to modify the system:

$$\partial_t A + \lambda_E \begin{bmatrix} \frac{\delta \mathcal{E}}{\delta A} \end{bmatrix} + \lambda_H \begin{bmatrix} \frac{\delta \mathcal{H}}{\delta A} \end{bmatrix} = f.$$

$$\frac{d}{dt} \mathcal{E} = -F,$$

$$\frac{d}{dt} \mathcal{H} = 0.$$

- ▶ When we modify our system by variations, we need a compatibility condition.
- ▶ $(\partial_t A, \frac{\delta \mathcal{E}}{\delta A}) = -F$, and $(\partial_t A, \frac{\delta \mathcal{H}}{\delta A}) = 0$.
- ▶ Compatibility condition

$$\begin{pmatrix} \|B\|^2 & (j, B) \\ (j, B) & \|j\|^2 \end{pmatrix} \begin{pmatrix} \lambda_H \\ \lambda_E \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

- ▶ Thus, the determinant of the matrix is

$$\|B\|^2 \|j\|^2 - (j, B)^2 > 0,$$

if $B \nparallel j$ (i.e. $j \times B \neq 0$), $B \neq 0$ and $j \neq 0$.

- ▶ Farrell E.P, M He., K Hu., G Zhang: Global and local helicity-preserving scheme for magnetic relaxation (2026, in preparation).

Summary

- ▶ Hamiltonian system can be expressed as Poisson bracket.

Summary

- ▶ Hamiltonian system can be expressed as Poisson bracket.
- ▶ Two types of conservation: Energy (antisymmetry) and Casimir (degeneracy).

Summary

- ▶ Hamiltonian system can be expressed as Poisson bracket.
- ▶ Two types of conservation: Energy (antisymmetry) and Casimir (degeneracy).
- ▶ Hamiltonian system can be modified for relaxation to equilibrium or selective decay in turbulence modeling.

Summary

- ▶ Hamiltonian system can be expressed as Poisson bracket.
- ▶ Two types of conservation: Energy (antisymmetry) and Casimir (degeneracy).
- ▶ Hamiltonian system can be modified for relaxation to equilibrium or selective decay in turbulence modeling.
- ▶ Antisymmetric bracket + symmetric positive bracket (GENERIC)

Summary

- ▶ Hamiltonian system can be expressed as Poisson bracket.
- ▶ Two types of conservation: Energy (antisymmetry) and Casimir (degeneracy).
- ▶ Hamiltonian system can be modified for relaxation to equilibrium or selective decay in turbulence modeling.
- ▶ Antisymmetric bracket + symmetric positive bracket (GENERIC)
- ▶ Symmetric positive bracket with Hamiltonian hidden in the kernel (Metriplectic dynamics)
→ magneto-frictional system.

Summary

- ▶ Hamiltonian system can be expressed as Poisson bracket.
- ▶ Two types of conservation: Energy (antisymmetry) and Casimir (degeneracy).
- ▶ Hamiltonian system can be modified for relaxation to equilibrium or selective decay in turbulence modeling.
- ▶ Antisymmetric bracket + symmetric positive bracket (GENERIC)
- ▶ Symmetric positive bracket with Hamiltonian hidden in the kernel (Metriplectic dynamics)
→ magneto-frictional system.
- ▶ For equilibrium problem: we wish our PDE to be relaxed completely.

$$u_{\text{variational}}^* \subset u_{\text{dynamics}}^*$$

- ▶ Numerical methods: we can leverage the hidden structures to develop numerical schemes.

References I

- ▶ Grmela, Miroslav, and Hans Christian Öttinger. "Dynamics and thermodynamics of complex fluids. I. Development of a general formalism." *Physical Review E* 56.6 (1997): 6620.
- ▶ Öttinger, Hans Christian, and Miroslav Grmela. "Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism." *Physical Review E* 56.6 (1997): 6633.
- ▶ Modin, Klas, and Milo Viviani. "A Casimir preserving scheme for long-time simulation of spherical ideal hydrodynamics." *Journal of Fluid Mechanics* 884 (2020): A22.

Thank you!
Mingdong.He@maths.ox.ac.uk